Quantized Elastica as a Loop Space

Shigeki Matsutani (Sagamihara)

July 5, 2014, Kansai Univ.

This talk is based on the works with Yoshihiro Ônishi, and Emma Previato

I work in Canon Inc. Dep.
of Engineering Math. as
Applied Mathematician and
Applied Physicist,
whereas I study Pure Math as a private researcher.

1992 Phys.Rev.A: M-Tsuru, Physical relation between quantum mechanics and soliton on a thin elastic rod,
1995 Mod.Phys.Lett.A: M, The relation of Lemniscate and a loop soliton as $3 / 2$ and 1 pin fields along the modified Korteweg-de Vries equation 1998 J.Phys.A: M, Statistical Mechanics of elastica on plane, 1999 J.Geom.Phys.: M, Statistical mechanics of non-stretching elastica in three dimensional space,
2002 J.Geom.Phys.: M, Hyperelliptic loop solitons with genus g: investigation of a quantized elastica,
2003 Rev. Math.Phys.: M-Ônishi, On the moduli of a quantized elastica in P and KdV flows: study of hyperelliptic curves as an extension of Eulers perspective of elastica I,
2007 J. Diff. Eqns.: M, Reality conditions of loop solitons genus g: hyperelliptic am functions Electron,
2008 Crelle's J: Eilbeck-Enolskii-M-Ônishi-Previato, Addition formulae over the Jacobian pre-image of hyperelliptic Wirtinger varieties
2008 J.Phys.A: M, Relations in a quantized elastica
2008, 2014, J.Math.Soc.Japan: M-Previato, Jacobi inversion on strata of the Jacobian of the $C_{r s}$ curve $y^{r}=f(x)$. I, II
2009 Israel J. Math: M-Previato, A generalized Kiepert formula, 2010 J. Geom. Symm. Phys: M, Eulers Elastica and Beyond,
2013 Annales de I Institut Fourier: Kodama-M-Previato, Quasi-periodic and periodic solutions of the Toda lattice +60 papers

Quantized Elastica as a Loop Space

Shigeki Matsutani (Sagamihara)

July 7, 2014, Kansai Univ.

Menu

1. History of Elastica
2. Motivation: Quantization of Elastica
3. Infinitesimal Isometric Diffeomorphism idiff
4. Infinitesimal Isometric \& Isoenergy Diffeomorphism $\mathfrak{i i d i f f}$
5. Isometric \& Isoenergy Diffeomorphism IIDiff
6. Topological Properties of Moduli of Quantized Elasticas
7. Euler's Elastica
8. Quantized Elastica and Hyperelliptic Jacobian
9. Remark

1. History of Elastica

(Origin of Variational Principle, Differential Geometry, Algebraic Geometry, Elliptic function, Moduli of Elliptic Curves)

History of Elastica I Preliminary

Immersion:

$$
\begin{aligned}
& Z: S^{1} \hookrightarrow \mathbb{C} \text { smooth }\left(\left|\partial_{s} Z\right|=1\right) \\
& Z(s)=X(s)+\sqrt{-1} Y(s) \\
& \mathbf{t}=\partial_{s} Z=\mathrm{e}^{\sqrt{-1} \phi}, \phi \in \mathcal{C}^{\infty}\left(\kappa^{-1} S^{1}, \mathbb{R}\right) \\
& \quad=\cos \phi+\sqrt{-1} \sin \phi \\
& \mathbf{n}=\sqrt{-1} \mathrm{t}=\sqrt{-1} \partial_{s} Z \\
& \kappa
\end{aligned}
$$

Curvature \& Frenet-Serret relation

$$
\begin{equation*}
\mathbf{t}:=\partial_{s} Z, \quad \partial_{s} \mathbf{t}=k \mathbf{n}, \quad \partial_{s} \mathbf{n}=-k \mathbf{t}, \quad\left(\partial_{s}^{2} Z=\sqrt{-1} k \partial_{s} Z\right) \tag{1}
\end{equation*}
$$

$k:=\partial_{s} \phi:$ the curvature; $k=1 /$ curvature radius.

History of Elastica II

What is elastica?

Elastica is an elastic curve or an ideal thin non-stretching elastic beam.
the model of a bent paper, a bent rod, wire, rope and so on.

The elastica problem was proposed by James (Jacob) Bernoulli (16541705) in 1691:
"What shape does an elastica have in a plane?'’

History of Elastica III Oriain of elastica

Leonardo da Vinci (1452-1519)

History of Elastica IV
Origin of elastica
Leonardo da Vinci (1452-1519) drew the pictures of bent beams

History of Elastica V Oriain of elastica

Galileo Galilei (1564-1654)

History of Elastica VI Origin of elastica

Galileo Galilei (1564-

 1654) investigated bent beams.It is a problem of cantilever.

James Bernoulli (1654-1705)

History of Elastica VIII
Origin of elastica
James Bernoulli (1654-1705) proposed the Elastica problem and found the fact that the elastic force is proportional to k and the Lemniscate integral: $s=\int_{X}^{1} \frac{d X}{\sqrt{1-X^{4}}}$.

History of Elastica IX
Lemniscate and Elastica
James Bernoulli defined the Lemniscate curve of eight figure.

Lemniscate $\left(x^{2}+y^{2}\right)^{2}=2 a^{2}\left(x^{2}-y^{2}\right)$
$\phi_{\text {lemni }}$:tangential angle ${ }_{3}$

$$
\phi_{\text {lemni }}=\frac{3}{2} \phi_{\text {elas }} \quad[\mathrm{M} \text { 1995] }
$$

Daniel Bernoulli (1700-1782)

History of Elastica XI
 Classical Elastica Problem

Daniel Bernoulli (1700-1782) discovered the least principle 1738 in a letter to Euler (1707-1783).

An elastica is realized as the least point of the energy,

$$
\begin{aligned}
& \int_{S^{1}} d s k^{2}(s)=\int_{S^{1}} d s\left(\partial_{s} \phi(s)\right)^{2} \\
& =\int_{S^{1}} g^{-1} d g * g^{-1} d g, \quad g \in U(1)
\end{aligned}
$$

Elastica problem is the oldest harmonic map problem.

Euler (1707-1783)

History of Elastica XIII
 "Methodus inveniendi lineas curvas"
 1744 "Method"

Euler's Classical Results of Elastica : 1744 "Method"

$$
\begin{aligned}
& s=\int^{X} \frac{\lambda^{2} d X}{\sqrt{\lambda^{4}-\left(\alpha+\beta X+\gamma X^{2}\right)^{2}}} \\
& Y=\int^{X} \frac{\left(\alpha+\beta X+\gamma X^{2}\right) d X}{\sqrt{\lambda^{4}-\left(\alpha+\beta X+\gamma X^{2}\right)^{2}}}
\end{aligned}
$$

Euler relation (M-Previato 2014)

$$
X(s)-X_{0}=\frac{1}{4} k(s)
$$

affine coordinate \propto affine connection

History of Elastica XV
Euler's Classical Results of Elastica (1744)

History of Elastica XVI
 Euler's Classical Results of Elastica (1744)

It is related to

1. Harmonic Map $S^{1} \rightarrow \cup(1)$,
2. Variational Method
3. Curve as Differential Geometry
4. Curve as Algebraic Geometry
5. Elliptic Function
6. Moduli of Elliptic Curves

2. Motivation

Quantization of Elastica (Statistical Mechanics of Elasticas)

quantization of geometry

Motivation I: Quantization of Elastica

Pictures of DNAs by atomic force microscopes shows the supercoils.

Pictures of DNAs by atomic force microscopes

These shapes are super-coils rather than double coils. Super-coil is weakly governed by the elastic force!

Motivation II: Quantization of Elastica

Too simple

Complicate

Why the shapes of super-coiled DNA due to elastic force are complicate?

Motivation III: Quantization of Elastica

The reasons why the shapes of super-coiled DNA are complicate are several ones: the chemical effects, stretching effects, the solvent effects, the heat effects and so on.

I have been studying a statistical mechanics of elastica, which I call quantized elastica due to $\hbar \leftrightarrow \sqrt{-1} / \beta$.

In order to understand the quantization of geometrical objects, we consider the quantized elastica.

Motivation IV:

Physical Motivation: Partition Function of Elasticas

The partition function of the quantized elastica at the temperature $T:=1 / \beta$, is formally given by

$$
\mathcal{W}_{\mathrm{elas}}[\beta]=\int_{\mathcal{M}_{\mathrm{elas}}^{\mathbb{C}}} D Z \exp (-\beta \mathcal{E}[Z])
$$

with energy for the curvature k

$$
\mathcal{E}[Z]:=\oint d s k^{2}
$$

for its domain

$$
\mathcal{M}_{\text {elas }}^{\mathbb{C}}:=\left\{Z: S^{1} \rightarrow \mathbb{C}\left|\oint d Z=2 \pi,\left|\partial_{s} Z\right|=1\right\} / \sim\right.
$$

where \sim means the euclidean moves, and trivial coordinate transformation: $g_{s_{0}} Z(s)=Z\left(s-s_{0}\right)$ for $g_{s_{0}} \in U(1)$.

Motivation V :
Mathematical Motivation: Moduli of Quantized Elastica
It is a mathematical problem how we classify the moduli of isometric loops,

$$
\mathcal{M}_{\mathrm{elas}}^{\mathbb{C}}=\left\{Z: S^{1} \rightarrow \mathbb{C}\left|\oint d Z=2 \pi,\left|\partial_{s} Z\right|=1\right\} / \sim\right.
$$

from viewpoints of the energy,

$$
\mathcal{E}[Z]:=\oint d s k^{2}
$$

This is a loop space in category of differential geometry.

Motivation VI :
 Mathematical Motivation: Moduli of Quantized Elastica

It is a mathematical problem how we evaluate the moduli of isometric loops with isoenergy E,

$$
\mathcal{M}_{\mathrm{elas}, E}^{\mathbb{C}}=\left\{Z \in \mathcal{M}_{\mathrm{elas}}^{\mathbb{C}} \mid \mathcal{E}[Z]=E\right\}, \quad \mathcal{M}_{\mathrm{elas}}^{\mathbb{C}}=\coprod_{E} \mathcal{M}_{\mathrm{elas}, E}^{\mathbb{C}},
$$

in order to evaluate

$$
\mathcal{W}_{\mathrm{elas}}[\beta]=\int_{0}^{\infty} d E \operatorname{Vol}\left(\mathcal{M}_{\mathrm{elas}, E}^{\mathbb{C}}\right) \exp (-\beta E)
$$

This is an isometric and isoenergy loop space.
Since wild curves have higher energy than the others, we can assume that the map Z is analytic.

Motivation VII :
Mathematical Motivation: Moduli of Quantized Elastica We wish to investigate $\mathcal{M}_{\text {elas }}^{\mathbb{C}}, \mathcal{M}_{\text {elas }, E}^{\mathbb{C}}$ and $\mathcal{M}_{\text {elas }, \partial_{s} Z}^{\mathbb{C}}$.

$$
\begin{aligned}
& \mathcal{M}_{\text {elas }}^{\mathbb{C}}=\left\{Z: S^{1} \rightarrow \mathbb{C}: \text { analytic }\left|\oint d Z=2 \pi,\left|\partial_{s} Z\right|=1\right\} / \sim,\right. \\
& \mathcal{M}_{\text {elas }, E}^{\mathbb{C}}=\left\{Z \in \mathcal{M}_{\text {elas }}^{\mathbb{C}} \mid \mathcal{E}[Z]=E\right\}, \\
& \mathcal{M}_{\text {elas }, \mathrm{SO}(2)}^{\mathbb{C}}=\left\{\partial_{s} Z \mid Z \in \mathcal{M}_{\text {elas }}^{\mathbb{C}}\right\} . \\
& \mathcal{M}_{\text {elas }, \mathrm{SO}(2)}^{\mathbb{C}} \subset \mathcal{M}_{\mathrm{SO}(2)}:=\left\{f: S^{1} \rightarrow \mathrm{SO}(2): \text { analytic }\right\} .
\end{aligned}
$$

$\mathrm{SO}(2)$ trivially acts on $\mathcal{M}_{\text {elas }}^{\mathbb{C}}$ or a stabilizer, i.e.,

$$
g_{\theta} Z=Z \in \mathcal{M}_{\mathrm{elas}}^{\mathbb{C}}, \quad\left(g_{\theta} Z(s)=Z(s-\theta)\right) .
$$

3. Infinitesimal Isometric Diffeo. idiff

Isometric Diffeomorphism (IDIFF)
\equiv Arc-length preserving Diffeomorphism
\equiv Non-stretching deformation (Curve flow)

Infinitesimal Isometric Diffeomorphism (idiff $=d$ IDIFF $\left.\right|_{e}$)

Infinitesimal Isometric Diffeo. idiff II:
Complex analysis viewpoint I

1st: tangential angle
2nd: curvature

3rd: Schwarz derivative

$$
\begin{aligned}
& \phi=\frac{1}{\sqrt{-1}} \log Z^{\prime}\left(s_{0}\right) \\
& k:=\frac{1}{\sqrt{-1}} \frac{Z^{\prime \prime}\left(s_{0}\right)}{Z^{\prime}\left(s_{0}\right)}=\partial_{s} \phi \\
& \left\{Z, s_{0}\right\}_{\mathrm{SD}}=\left[\frac{Z^{\prime \prime \prime}\left(s_{0}\right)}{Z^{\prime}\left(s_{0}\right)}-\frac{3}{2}\left(\frac{Z^{\prime \prime}\left(s_{0}\right)}{Z^{\prime}\left(s_{0}\right)}\right)^{2}\right] \\
& \quad=\left(\sqrt{-1} \partial_{s} k-\frac{1}{2} k^{2}\right)
\end{aligned}
$$

Euler-Bernoulli energy function is given by

$$
\mathcal{E}[Z]:=-2 \oint\{Z, s\}_{\mathrm{SD}} d s=\oint k^{2} d s
$$

Infinitesimal Isometric Diffeo. idiff I:
 Complex analysis viewpoint II

Complex analysis viewpoint shows:
Proposition Tjurin (1974) $\left(s_{1}<s_{0}<s_{2}\right)$

$$
\begin{aligned}
& \frac{1}{2} \log \frac{Z\left(s_{2}\right)-Z\left(s_{1}\right)}{s_{2}-s_{1}}=\frac{1}{2} \log Z^{\prime}\left(s_{0}\right) \\
& \operatorname{lo} \frac{1}{2} \frac{1}{2!} \frac{Z^{\prime \prime}\left(s_{0}\right)}{Z^{\prime}\left(s_{0}\right)} \\
&+\frac{1}{2} \frac{1}{3!}\left[s_{1}+s_{2}\right) \\
&\left.+\frac{Z^{\prime \prime \prime}\left(s_{0}\right)}{Z^{\prime}\left(s_{0}\right)}-\frac{3}{4}\left(\frac{Z^{\prime \prime}\left(s_{0}\right)}{Z^{\prime}\left(s_{0}\right)}\right)^{2}\right]\left(s_{2}^{2}+s_{1}^{2}\right) \\
& Z^{\prime \prime \prime}\left(s_{0}\right) \\
&\left.Z^{\prime}\right)\left.\frac{3}{2}\left(\frac{Z^{\prime \prime}\left(s_{0}\right)}{Z^{\prime}\left(s_{0}\right)}\right)^{2}\right]\left(s_{1} s_{2}\right)+\cdots
\end{aligned}
$$

The left hand side appears in the Lagrange inversion formula, Replicable function, dKP theory and so on.

Infinitesimal Isometric Diffeo. idiff III: Infinitesimal Isometric Deformation I

1. Let us consider the fiber $T_{Z} \mathcal{M}_{\text {elas }}^{\mathbb{C}}$ of the tangent space $T \mathcal{M}_{\text {elas }}^{\mathbb{C}}$ at $Z \in \mathcal{M}_{\text {elas }}^{\mathbb{C}}$, or the infinitesimal flow of $t \in(-\varepsilon, \varepsilon)$ in $\mathcal{M}_{\text {elas }}^{\mathbb{C}}$ at Z;

$$
t:(-\epsilon, \epsilon) \rightarrow \mathcal{M}_{\mathrm{elas}}^{\mathbb{C}}, \quad \text { and } \quad \text { consider }\left.\partial_{t} Z\right|_{t=0}
$$

2. There is a trivial flow fixing a point $Z \in \mathcal{M}_{\text {elas }}^{\mathbb{C}}$

$$
\partial_{t} Z=c \partial_{s} Z, \quad c \in \mathbb{R}, \quad \text { or } \quad Z(s)=Z(s+c t)
$$

> Infinitesimal Isometric Diffeo. idiff IV: Infinitesimal Isometric Deformation II
3. For the isometric (nonstretching, arc-length preserving) deformation parameter $t \in(-\varepsilon, \varepsilon)$, the non-stretching condition is

$$
\left[\partial_{t}, \partial_{s}\right] Z=0
$$

4. The non-stretching condition
 $\left[\partial_{t}, \partial_{s}\right] Z=0$ means

$$
\partial_{s} \partial_{t} \phi=\partial_{t} \partial_{s} \phi=\partial_{t} k
$$

Infinitesimal Isometric Diffeo. idiff V:

Infinitesimal Isometric Deformation III

4. By letting

$$
\mathcal{A}_{S^{1}}^{0}(\mathbb{R}):=\mathcal{C}^{\omega}\left(S^{1}, \mathbb{R}\right), \quad \mathcal{A}_{S^{1}}^{0}(\mathbb{C}):=\mathcal{C}^{\omega}\left(S^{1}, \mathbb{C}\right)
$$

and

$$
\mathcal{A}_{S^{1}}^{1}(\mathbb{R}): \mathcal{C}^{\omega}\left(S^{1}, \mathbb{R}\right) \text {-valued one form of } S^{1}
$$

we consider the non-stretching condition of

$$
\partial_{t} Z(s)=U(s) \partial_{s} Z=\left(U_{r}(s)+\sqrt{-1} U_{i}(s)\right) \partial_{s} Z
$$

for

$$
U=U_{r}+\sqrt{-1} U_{i} \in \mathcal{A}_{S^{1}}^{0}(\mathbb{C}) \text { and } U_{r}, U_{i} \in \mathcal{A}_{S^{1}}^{0}(\mathbb{R})
$$

Infinitesimal Isometric Diffeo. idiff VI: Infinitesimal Isometric Deformation IV

6. The non-stretching condition $\left[\partial_{t}, \partial_{s}\right] Z=0$ leads the following relations (Goldstein-Petrich 1991);

$$
\begin{aligned}
& \begin{aligned}
\partial_{t}\left(\partial_{s} Z\right) & =\partial_{t} \mathrm{e}^{\sqrt{-1} \phi}=\sqrt{-1} \partial_{t} \phi \partial_{s} Z, \\
\partial_{s}\left(\partial_{t} Z\right) & =\partial_{s}\left[\left(U_{r}+\sqrt{-1} U_{i}\right) \partial_{s} Z\right] \\
& =\left[\left(\partial_{s} U_{r}-k U_{i}\right)+\sqrt{-1}\left(\partial_{s} U_{i}+k U_{r}\right)\right] \partial_{s} Z .
\end{aligned} \\
& \mapsto \quad\left(\partial_{s} U_{r}-k U_{i}\right)=0, \quad \text { and } \quad \partial_{t} \phi=\left(\partial_{s} U_{i}+k U_{r}\right), \\
& \mapsto \quad \begin{aligned}
\partial_{s} U_{r} & =k U_{i}, \quad \text { and } \partial_{t} k \\
U_{r} & =\partial_{s}^{-1} k U_{i}, \\
& =\left(\partial_{s} U_{i}+k \partial_{s}^{-1} k U_{i}\right) \\
& \left.=\partial_{s} k \partial_{s}^{-1} k\right) U_{i} .
\end{aligned}
\end{aligned}
$$

Infinitesimal Isometric Diffeo. idiff VII:

Infinitesimal Isometric Deformation V

7. $\partial_{s} U_{r}=k U_{i}\left(U_{r}=\partial_{s}^{-1} k U_{i}\right)$ means the $\mathfrak{s o}(2)$-condition,

$$
\partial_{s}\binom{U_{r}}{U_{i}}=\left(\begin{array}{cc}
0 & k \\
\partial_{s} k^{-1} \partial_{s} & 0
\end{array}\right)
$$

8. $\partial_{s} U_{r}=k U_{i}\left(\partial_{s} U_{r} d s=k U_{i} d s\right)$ also means the injection,

$$
\begin{aligned}
\ell_{d}: \mathcal{A}_{S^{1}}^{0}(\mathbb{R}) & \rightarrow d \mathcal{A}_{S^{1}}^{0}(\mathbb{R}) \subset \mathcal{A}_{S^{1}}^{1}(\mathbb{R}) \\
U_{i} & \mapsto d U_{r}=\partial_{s} U_{r} d s=k U_{i} d s=\ell_{d}\left(U_{i}\right)
\end{aligned}
$$

Infinitesimal Isometric Diffeo. idiff VIII: Infinitesimal Isometric Deformation VI

9. Note that for $c \in \mathbb{R}, \partial_{t} Z=c \partial_{s} Z$ means a trivial flow in $\mathcal{M}_{\text {elas }}^{\mathbb{C}}$, and thus $\ell_{d}\left(d U_{r}=\ell_{d}\left(U_{i}\right)\right)$ induces

$$
\ell_{r}: U_{i} \mapsto U_{r}, \quad \ell_{r}: \mathcal{A}_{S^{1}}^{0}(\mathbb{R}) \rightarrow \mathcal{A}_{S^{1}}^{0}(\mathbb{R})
$$

up to the constant translation, and thus

$$
\left(\ell_{r}\left(U_{i}\right)=a+\int^{s} \ell_{d}\left(U_{i}\right) d s \text { for } a \in \mathbb{R} \text { such that } \oint \ell_{r}\left(U_{i}\right) d s=0\right)
$$

Infinitesimal Isometric Diffeo. idiff IX: Infinitesimal Isometric Deformation VII

Proposition (Brylinski 1993)
The fiber $T_{Z} \mathcal{M}_{\text {elas }}^{\mathbb{C}}$ at $Z \in \mathcal{M}_{\text {elas }}^{\mathbb{C}}$ is bijection to $\mathcal{A}_{S^{1}}^{0}(\mathbb{R})$ by

$$
T_{Z} \mathcal{M}_{\mathrm{elas}}^{\mathbb{C}} \approx \mathcal{A}_{S^{1}}^{0}(\mathbb{R}), \quad\left(\partial_{t} Z=\ell\left(U_{i}\right) \partial_{s} Z, \quad U_{i} \in \mathcal{A}_{S^{1}}^{0}(\mathbb{R})\right)
$$

where $\ell: \mathcal{A}_{S^{1}}^{0}(\mathbb{R}) \rightarrow \mathcal{A}_{S^{1}}^{0}(\mathbb{C}), \quad\left(\ell:=\ell_{r}+\sqrt{-1 i d}\right)$, for $U_{i} \in$ $\left.\mathcal{A}_{S^{1}}^{0}(\mathbb{R})\right)$.

The tangential space is determined by the velocity U_{i} for the normal direction.

Note that $\phi \notin \mathcal{A}_{S^{1}}^{0}(\mathbb{R})$.

> Infinitesimal Isometric Diffeo. idiff X : Infinitesimal Isometric Deformation VIII

Proposition

The curvature k in $T_{Z} \mathcal{M}_{\text {elas }}^{\mathbb{C}}$ at $Z \in \mathcal{M}_{\text {elas }}^{\mathbb{C}}$ is given by

$$
\partial_{t} k=\Omega_{i} U_{i} \quad U_{i} \in \mathcal{A}_{S^{1}}^{0}(\mathbb{R}),
$$

where

$$
\Omega_{i}:=\partial_{s}\left(k \partial_{s}^{-1} k+\partial_{s}\right) .
$$

The curvature k is given by

$$
k d s=d \log g=g^{-1} d g, \quad g \in \mathrm{SO}(2) .
$$

4. Infinitesimal Isometric \& Isoenergy Diffeo., iidiff

$$
\text { For } Z \in \mathcal{M}_{\text {elas }, E}^{\mathbb{C}} \subset \mathcal{M}_{\text {elas }}^{\mathbb{C}}
$$

consider $T_{Z} \mathcal{M}_{\text {elas }, E}^{\mathbb{C}} \subset T_{Z} \mathcal{M}_{\text {elas }}^{\mathbb{C}}$.

Infinitesimal Isometric \& Isoenergy Diffeo. iidiff I:

Lemma

For $U_{i} \in \mathcal{A}_{S^{1}}^{0}(\mathbb{R})$, the deformation $\partial_{t} Z=\ell\left(U_{i}\right) \partial_{s} Z$ or $\partial_{t} k=\partial_{s}\left(k \partial_{s}^{-1} k+\partial_{s}\right) U_{i}$ is not isoenergy in general.

Proof:

$$
\begin{aligned}
\partial_{t} \mathcal{E} & =\partial_{t} \oint k^{2} d s=2 \partial_{t} \oint k \partial_{t} k d s=\oint k \partial_{s}\left(k \partial_{s}^{-1} k+\partial_{s}\right) U_{i} d s \\
& =2 \oint k \partial_{s}\left(k \partial_{s}^{-1} k U_{i}\right)+2 \oint k \partial_{s}^{2} U_{i} d s \\
& =-2 \oint\left(\partial_{s} k\right) k \partial_{s}^{-1} k U_{i} d s+2 \oint\left(\partial_{s}^{2} k\right) U_{i} d s \\
& =-\oint\left(\partial_{s}\left(k^{2}\right)\right) \partial_{s}^{-1} k U_{i} d s+2 \oint\left(\partial_{s}^{2} k\right) U_{i} d s \\
& =\oint k^{2} k U_{i} d s+2 \oint\left(\partial_{s}^{2} k\right) U_{i} d s=\oint\left(k^{3}+2 \partial_{s}^{2} k\right) U_{i} d s
\end{aligned}
$$

Infinitesimal Isometric \& Isoenergy Diffeo. iidiff II:
The related loop group of $\mathcal{M}_{\text {elas }}^{\mathbb{C}}$:

$$
\mathcal{M}_{\text {elas }, \mathrm{SO}(2)}^{\mathbb{C}}=\left\{\partial_{s} Z \mid Z \in \mathcal{M}_{\text {elas }, S^{1}}^{\mathbb{C}}\right\} \subset \mathcal{M}_{\mathrm{SO}(2)} .
$$

Key Fact 1: Trivial deformation

1. There is a trivial isometric \& isoenergy diffeomorphism,

$$
\partial_{t} Z=\partial_{s} Z \quad \text { with } \quad \partial_{t} k=\partial_{s} k, \quad \mathfrak{s o}(2)
$$

Infinitesimal Isometric \& Isoenergy Diffeo. iidiff III:

Lemma

For $\mathcal{A}_{S^{1}, c}^{0}(\mathbb{R}):=\left\{\omega \in \mathcal{A}_{S^{1}}^{1}(\mathbb{R}) \mid \oint \omega=0\right\}$, we have $\mathcal{A}_{S^{1}, c}^{0}(\mathbb{R})=$ $d \mathcal{A}_{S^{1}}^{0}(\mathbb{R}) .\left(\operatorname{Ker}(\oint)=d \mathcal{A}_{S^{1}}^{0}(\mathbb{R}).\right)$

Proof: For $F \in \mathcal{C}^{\omega}(\mathbb{R}, \mathbb{R})$ such that $\omega=d F$, the condition $\oint \omega=$ $F(2 \pi)-F(0)=0$ means that $F \in \mathcal{C}^{\omega}\left(S^{1}, \mathbb{R}\right) \equiv \mathcal{A}_{S^{1}}^{0}(\mathbb{R})$.

Proposition

$\partial_{t} \mathcal{E}$ vanishes iff $k \partial_{t} k d s \in d \mathcal{A}_{S^{1}}^{0}(\mathbb{R})$ i.e., $\exists f \in \mathcal{A}_{S^{1}}^{0}(\mathbb{R})$ such that

$$
k \partial_{t} k d s=\partial_{s} f d s \in d \mathcal{A}_{S^{1}}^{0}(\mathbb{R})
$$

Proof: $\partial_{t} \mathcal{E}=\partial_{t} \oint k^{2} d s=\oint k \partial_{t} k d s=0$ means $\oint \partial_{s} f d s=0$ due to Lemma. ■

Infinitesimal Isometric \& Isoenergy Diffeo. iidiff IV:
Key Facts for $\mathfrak{i i d i f f}$
Key Fact 1: A trivial deformation $\partial_{t_{1}} k=\partial_{s} k$.
Key Fact 2: idiff: $\quad \partial_{t} k=\Omega_{i} U_{i}, \quad \partial_{s} U_{r}=k U_{i}$

Key Fact 2:
$k \widehat{\partial_{t} k}=\partial_{s} f$ in Proposition recalls $k \widehat{U_{i}^{\prime}}=\partial_{s} U_{r}^{\prime}$.

Infinitesimal Isometric \& Isoenergy Diffeo. iidiff V:

Key Fact 3: Proposition

The isometric diffeomorphisms with $t, t^{\prime} \in(-\varepsilon, \varepsilon)$,

$$
\begin{array}{cc}
\partial_{t} Z=\ell\left(U_{i}\right) \partial_{s} Z=\left(U_{r}+\sqrt{-1} U_{i}\right) \partial_{s} Z, & \left(\partial_{t} k=\Omega_{i} U_{i}\right) \\
\partial_{t^{\prime}} Z=\ell\left(U_{i}^{\prime}\right) \partial_{s} Z=\left(U_{r}^{\prime}+\sqrt{-1} U_{i}^{\prime}\right) \partial_{s} Z, & \left(\partial_{t^{\prime}} k=\Omega_{i} U_{i}^{\prime}\right)
\end{array}
$$

with $\ell_{d}: \mathcal{A}_{S^{1}}^{0}(\mathbb{R}) \rightarrow d \mathcal{A}_{S^{1}}^{0}(\mathbb{R}), k U_{i}^{\prime}=\partial_{s} U_{r}^{\prime}$ and $k U_{i}=\partial_{s} U_{r}$. If $\partial_{t} k=U_{i}^{\prime}$, the energy $\partial_{t} \mathcal{E}$ vanishes, $\partial_{t} \mathcal{E}=\oint d s k \partial_{t} k=0$.

Proof: $\partial_{t} \mathcal{E}=2 \oint d s k \partial_{t} k=2 \oint d s k U_{i}^{\prime}=2 \oint d s \partial_{s} U_{r}^{\prime}=0$

$$
\partial_{t} k=\Omega_{i} U_{i} . \quad \text { and } \quad \partial_{t^{\prime}} k=\Omega_{i} U_{i}^{\prime}=\Omega_{i} \partial_{t} k=\Omega_{i}^{2} U_{i}
$$

Infinitesimal Isometric \& Isoenergy Diffeo. iidiff VI:

Key Fact 3: Corollary

The infinitesimal isometric diffeomorphism $\partial_{t} Z=\ell\left(U_{i}\right) \partial_{s} Z$ is isoenergy, if there exists another infinitesimal isometric diffeomorphism $t^{\prime}, \partial_{t^{\prime}} Z=\ell\left(\partial_{t} k\right) \partial_{s} Z$, i.e.,

$$
\partial_{t^{\prime}} k=\Omega_{i} \partial_{t} k=\Omega_{i}^{2} U_{i}
$$

Ascendant relations:
Isometric t is isoenergy! $\leftarrow \exists$ isometric $t^{\prime}: \partial_{t^{\prime}} k=\Omega_{i} \partial_{t} k$
Isometric t^{\prime} is isoenergy! $\leftarrow \exists$ isometric $t^{\prime \prime}: \partial_{t^{\prime \prime}} k=\Omega_{i} \partial_{t^{\prime}} k$.
Isometric $t^{\prime \prime}$ is isoenergy! $\leftarrow \exists$ isometric $t^{\prime \prime \prime}: \partial_{t^{\prime \prime \prime}} k=\Omega_{i} \partial_{t^{\prime \prime}} k$.

Infinitesimal Isometric \& Isoenergy Diffeo. iidiff VII:
Summary of Key Facts
Key Fact 1: A trivial deformation is Isometric and isoenergy! $\partial_{t} Z=(1+0 \sqrt{-1}) \partial_{s} Z, \partial_{t} k=\partial_{s} k$,

$$
\oint k \partial_{t} k d s=\oint \frac{1}{2} \partial_{s} k^{2} d s=0
$$

Key Fact 3: iidiff is given as a sequence of $\mathfrak{i d i f f}$. Isometric t is isoenergy! $\leftarrow \exists$ isometric $t^{\prime}: \partial_{t^{\prime}} k=\Omega_{i} \partial_{t} k$

Remark
The trivial deformation $\partial_{t} k=\partial_{s} k$ should be regarded that there might exist a flow of t^{\prime} for

$$
\begin{aligned}
\partial_{t^{\prime}} k & =\Omega \partial_{t} k=\Omega \partial_{s} k, \quad\left(U_{i}^{\prime}=\partial_{t} k, U_{r}^{\prime}=\frac{1}{2} k^{2}\right) \\
\partial_{t^{\prime}} Z & =\left(\frac{1}{2} k^{2}+\sqrt{-1} \partial_{s} k\right) \partial_{s} Z=-\overline{\{Z, s\}_{\mathrm{SD}}} \partial_{s} Z
\end{aligned}
$$

Infinitesimal Isometric \& Isoenergy Diffeo. iidiff VIII:

Key Fact 4: Lemma

The deformation

$$
\begin{gathered}
\partial_{t^{\prime}} k=\Omega \partial_{s} k \quad\left(U_{i}^{\prime}=\partial_{s} k, U_{r}^{\prime}=\frac{1}{2} k^{2}\right) \\
\partial_{t^{\prime}} Z=\left(\frac{1}{2} k^{2}+\sqrt{-1} \partial_{s} k\right) \partial_{s} Z=-\overline{\{Z, s\}_{\mathrm{SD}}} \partial_{s} Z
\end{gathered}
$$

is isoenergy.

Proof:

$$
\begin{aligned}
\partial_{t^{\prime}} \mathcal{E} & =2 \oint k \partial_{t^{\prime}} k d s \\
& =\oint\left(k^{3}+2 \partial_{s}^{2} k\right) \partial_{s} k d s \\
& =\oint \partial_{s}\left(\frac{1}{4} k^{4}+\left(\partial_{s} k\right)^{2}\right) d s
\end{aligned}
$$

Infinitesimal Isometric \& Isoenergy Diffeo. iidiff IX:
Ascendant infinitesimal isometric \& isoenergy relations from the trivial relation

$$
\begin{array}{cc}
\partial_{t_{1}} k=\partial_{s} k . & \mathfrak{s o}(2) \tag{2}\\
\partial_{t_{2}} k=\Omega_{i} \partial_{t_{1}} k=\Omega_{i} \partial_{s} k, & \wedge \mathfrak{s o}(2) \\
\partial_{t_{3}} k=\Omega_{i} \partial_{t_{2}} k=\Omega_{i}^{2} \partial_{t_{1}} k=\Omega_{i}^{2} \partial_{s} k, & \wedge \mathfrak{s o}(2) \\
\partial_{t_{4}} k=\Omega_{i} \partial_{t_{2}} k=\Omega_{i}^{2} \partial_{t_{2}} k=\Omega_{i}^{3} \partial_{t_{1}} k=\Omega_{i}^{3} \partial_{s} k, & \wedge \mathfrak{s o (2)} \\
\vdots & \vdots
\end{array}
$$

Infinitesimal Isometric \& Isoenergy Diffeo. iidiff X :
The MKdV hierarchy
$\partial_{t_{\ell}} k=\Omega_{i}^{\ell-1} \partial_{s} k(\ell=1,2, \ldots$,$) is the MKdV hierarchy:$

$$
\begin{aligned}
& \partial_{t_{1}} k-\partial_{s} k=0 \\
& \partial_{t_{2}} k-\frac{3}{2} k^{2} \partial_{s} k-\partial_{s}^{3} k=0 \\
& \partial_{t_{3}} k-10 k \partial_{s} k \partial_{s}^{2} k-\frac{5}{2} k^{2} \partial_{s}^{3} k-\frac{5}{2}\left(\partial_{s} k\right)^{3}-\frac{15}{8} k^{4} \partial_{s} k-\partial_{s}^{5} k=0
\end{aligned}
$$

The MKdV hierarchy $\partial_{t_{\ell}} k=\Omega_{i}^{\ell-1} \partial_{s} k(\ell=1,2, \ldots$,$) are isomet-$ ric and isoenergy.

Infinitesimal Isometric \& Isoenergy Diffeo. iidiff XI:

Fact 5. Lemma (Finite Dimension Condition)

If for $\ell \geq g+1, \partial_{t_{\ell}} k=\Omega_{i}^{\ell-1} \partial_{s} k \equiv 0$ or t_{ℓ} does not give a deformation essentially, t_{ℓ} is also a trivial isometric \& isoenergy diffeomorphism.

Proof: $\partial_{t} \mathcal{E}=\partial_{t} \oint k^{2} d s=2 \oint k \partial_{t} k d s=0 ■$
This makes $d Z=\partial_{t_{2}} Z d t_{2}+\partial_{t_{3}} Z d t_{3}+\cdots+\partial_{t_{g}} Z d t_{g}$: finite dimension;

$$
\operatorname{dim}_{\mathbb{R}} T_{Z} \mathcal{M}_{\mathrm{elas}, E}^{\mathbb{C}}=g-1
$$

Infinitesimal Isometric \& Isoenergy Diffeo. iidiff XII:
Summary of Key Facts
Key Fact 1: Trivial deformation $\partial_{t_{1}} k=\partial_{s} k$,
Key Fact 2: idiff: $\partial_{t} k=\Omega_{i} U_{i}, \quad \Omega_{i}:=\partial_{s}\left(\partial_{s}+k \partial_{s}^{-1} k\right)$.
Key Fact 3: $\mathfrak{i i d i f f}$ is given as a sequence of $\mathfrak{i d i f f}$.
Isometric t is isoenergy! \leftarrow ヨisometric $t^{\prime}: \partial_{t^{\prime}} k=\Omega_{i} \partial_{t} k$
Key Fact 4: $\partial_{t_{2}} k=\Omega_{i} \partial_{s} k$.
Key Fact 5: Finite Dimension Condition $\partial_{t_{\ell}} k=0$ for $\ell>g$.

Infinitesimal Isometric \& Isoenergy Diffeo. iidiff XIII:
Ascendant relations from the trivial relation

$$
\begin{array}{cc}
\partial_{t_{1}} k=\partial_{s} k . & \mathfrak{s o}(2) \\
\partial_{t_{2}} k=\Omega_{i} \partial_{t_{1}} k=\Omega_{i} \partial_{s} k, & \wedge \mathfrak{s o}(2) \\
\partial_{t_{3}} k=\Omega_{i} \partial_{t_{2}} k=\Omega_{i}^{2} \partial_{t_{1}} k=\Omega_{i}^{2} \partial_{s} k, & \wedge \mathfrak{s o}(2) \\
\partial_{t_{4}} k=\Omega_{i} \partial_{t_{2}} k=\Omega_{i}^{2} \partial_{t_{2}} k=\Omega_{i}^{3} \partial_{t_{1}} k=\Omega_{i}^{3} \partial_{s} k, & \wedge \mathfrak{s o (2)} \\
\vdots & \vdots \\
\vdots & \vdots \\
\partial_{t_{g+1}} k=0 & \text { trivial } \\
\partial_{t_{g+2}} k=0 & \text { trivial }
\end{array}
$$

Infinitesimal Isometric \& Isoenergy Diffeo. iidiff XIV: The MKdV hierarchy

$$
\begin{aligned}
& \partial_{t_{\ell}} k=\Omega_{i}^{\ell-1} \partial_{s} k(\ell=1,2, \ldots, g) \text { is the MKdV hierarchy: } \\
& \quad \partial_{t_{1}} k-\partial_{s} k=0 \\
& \partial_{t_{2}} k-\frac{3}{2} k^{2} \partial_{s} k-\partial_{s}^{3} k=0 \\
& \partial_{t_{3}} k-10 k \partial_{s} k \partial_{s}^{2} k-\frac{5}{2} k^{2} \partial_{s}^{3} k-\frac{5}{2}\left(\partial_{s} k\right)^{3}-\frac{15}{8} k^{4} \partial_{s} k-\partial_{s}^{5} k=0 \\
& \quad: \\
& \Omega_{i}^{g} \partial_{s} k=0
\end{aligned}
$$

Infinitesimal Isometric \& Isoenergy Diffeo. iidiff XV :

Key Fact 1: Trivial deformation

1. There is a trivial isometric \& isoenergy diffeomorphism,

$$
\partial_{t_{1}} k=\partial_{s} k, \quad \mathfrak{s o}(2)
$$

Key Fact 1': Lemma

By considering $\partial_{s}^{-1} 0=c \in \mathbb{R}$ and by letting $c=1$, we have

$$
\partial_{s} k=\Omega_{i} 0=\left(\partial_{s}^{2}+\partial_{s} k \partial_{s}^{-1} k\right) 0
$$

and thus

$$
\partial_{t_{1}} k=\Omega_{i} 0 .
$$

Infinitesimal Isometric \& Isoenergy Diffeo. iidiff XVI:

$$
\left(\begin{array}{c}
0 \\
\partial_{t_{1}} k \\
\partial_{t_{2}} k \\
\vdots \\
\partial_{t_{g}} k
\end{array}\right)=\left(\begin{array}{ccccc}
\Omega_{i} & & & & \Omega_{i} \\
& \Omega_{i} & & & \\
& & \ddots & & \\
& & & \Omega_{i} &
\end{array}\right)\left(\begin{array}{c}
0 \\
\partial_{t_{1}} k \\
\partial_{t_{2}} k \\
\vdots \\
\partial_{t_{g}} k
\end{array}\right) .
$$

This induces

$$
d Z=\partial_{1} Z d t_{1}+\partial_{2} Z d t_{2}+\partial_{3} Z d t_{3}+\cdots+\partial_{g} Z d t_{g},
$$

and $\mathfrak{s o}(2)^{(g+1) \oplus}$-actions $(\ell=0,1, \cdots, g)$,
$\left(\begin{array}{cc}\partial_{s} & -k \\ -\partial_{s} k^{-1} \partial_{s} & \partial_{s}\end{array}\right)\binom{1}{0}=0, \quad\left(\begin{array}{cc}\partial_{s} & -k \\ -\partial_{s} k^{-1} \partial_{s} & \partial_{s}\end{array}\right)\binom{\partial_{s}^{-1} k \Omega_{i}^{\ell} \partial_{s} k}{\Omega_{i}^{\ell} \partial_{s} k}=0$.
(Adams-Harnad-Previato CMP 1988, Adler-Kostant-Symes system for loop algebra. (Previato-M 2014)

5. Isometric \& Isoenergy Diffeo., IIDiff

(Pedit 1998, MO 2003, Fujioka-Kurose 2013)

Isometric \& Isoenergy Diffeo., IIDiff I

 Quantized Elastica in $\mathbb{C} P^{1}$ I$$
\begin{gathered}
\psi: \mathbb{C}^{2} \backslash\{0\} \rightarrow \mathbb{C} P^{1}, \\
\binom{\psi_{1}}{\psi_{2}} \mapsto \gamma:=\left(\psi_{1}: \psi_{2}\right)
\end{gathered}
$$

For $\psi_{2} \neq 0, \gamma=\frac{\psi_{1}}{\psi_{2}}$
$\mathrm{PSL}_{2}(\mathbb{C})$ acts on $\mathbb{C} P^{1}$ by

$$
g_{m}: \gamma \mapsto \frac{a \gamma+b}{c \gamma+d} .
$$

Isometric \& Isoenergy Diffeo., IIDiff II

 Quantized Elastica in $\mathbb{C} P^{1}$ II$$
\begin{aligned}
& \begin{array}{c}
\mathcal{M}_{\text {elas }}^{\mathbb{C}^{2} \backslash\{0\}}:=\{\psi
\end{array} \overline{S^{1} \rightarrow \mathbb{C}^{2} \backslash\{0\}}\left(\operatorname{det}\left(\psi, \psi_{s}\right)=1\right\} . \quad \leftrightarrow \quad \begin{array}{c}
\mathcal{M}_{\text {elas }}^{\mathbb{C} P^{1}}:=\left\{\gamma: S^{1} \rightarrow \mathbb{C} P^{1}\right. \\
\left.\left|\partial_{s} \gamma\right|=1\right\} .
\end{array} \\
& \mathbb{C}^{2} \backslash\{0\} \ni\binom{\psi_{1}}{\psi_{2}} \text { up to } \mathrm{SL}_{2}(\mathbb{C}) \text {. } \\
& \text { Solution }\binom{\psi_{1}}{\psi_{2}} \text { up } \mathrm{SL}_{2}(\mathbb{C}) \text { of } \\
& \begin{array}{c}
\left(-\partial_{s}^{2}-\frac{1}{2}\{\gamma, s\}_{\mathrm{SD}}\right) \psi=0, \\
\operatorname{det}\left(\psi, \psi_{s}\right)=1 .
\end{array} \\
& \{\gamma, s\}_{\text {SD }} \text { up to } \mathrm{PSL}_{2}(\mathbb{C}) \text {. } \\
& \begin{array}{c}
\psi_{\gamma}:=\binom{\sqrt{-1} \gamma / \sqrt{\partial_{z} \gamma}}{\sqrt{-1} / \sqrt{\partial_{z} \gamma}} \\
\text { with } \operatorname{det}\left(\psi_{\gamma}, \partial_{z} \psi_{\gamma}\right)=1 .
\end{array}
\end{aligned}
$$

Isometric \& Isoenergy Diffeo., IIDiff III Quantized Elastica in $\mathbb{C} P^{1}$ III

Isometric Deformation

The arc-length preserving deformation:

$$
\gamma_{t}: S^{1} \times(-\epsilon, \epsilon) \rightarrow \mathbb{C} P^{1}
$$

such that by letting $\partial_{t}:=\partial / \partial t$,

$$
\left(\partial_{t} \partial_{s}-\partial_{s} \partial_{t}\right) \gamma_{t}=\left[\partial_{t}, \partial_{s}\right] \gamma_{t}=0
$$

Isometric \& Isoenergy Diffeo., IIDiff IV

 Quantized Elastica in $\mathbb{C} P^{1}$ IV
Lemma

The arc-length preserving deformation is given by

$$
\partial_{t} \psi_{t}=\left(A(s, t)+B(s, t) \partial_{s}\right) \psi_{t},
$$

for functions $A(s, t)$ and $B(s, t)$ of $\mathcal{C}^{\infty}\left(S^{1} \times[0,1], \mathbb{C}\right)$ such that $\partial_{s} B(s, t)=-2 A(s, t)$.

Lemma

For the arc-length preserving deformation, $u:=\left\{\gamma_{\mathbb{R}}, s\right\}_{\mathrm{SD}} / 2$ satisfies
where

$$
\begin{gathered}
\partial_{t} u=-\Omega_{\mathbb{C} P^{1}} A \\
\Omega_{\mathbb{C} P^{1}} \partial_{s}=\left(\partial_{s}^{3}+2 u \partial_{s}+2 \partial_{s} u\right) .
\end{gathered}
$$

Isometric \& Isoenergy Diffeo., IIDiff V Quantized Elastica in $\mathbb{C} P^{1} \mathbf{V}$

$$
\begin{equation*}
\partial_{t_{n}} u=\frac{1}{2} \Omega_{\mathbb{C} P^{1}}^{n} \partial_{s} u, \quad(n=0,1, \ldots,) \tag{2}
\end{equation*}
$$

$\left[\partial_{t_{i}}, \partial_{t_{j}}\right] \gamma_{t}(s)=0(i, j=0, \ldots$,$) is Korteweg-de Vries(KdV)$
hierarchy which preserves the energy:

$$
\begin{array}{cc}
n=0: & \partial_{t_{0}} u+\partial_{s} u=0 \\
n=1: & \partial_{t_{1}} u+6 u \partial_{s} u+\partial_{s}^{3} u=0 \\
n=2: & \partial_{t_{2}} u+30 u^{2} \partial_{s} u+20 \partial_{s} u \partial_{s}^{2} u \\
& +10 u \partial_{s}^{3} u+\partial_{s}^{5} u=0
\end{array}
$$

Isometric \& Isoenergy Diffeomorphism, IIDiff VI: MKdV and KdV Hierarchies

The MKdV hierarchy $\partial_{t_{\ell}} k=\Omega_{i}^{\ell-1} \partial_{s} k(\ell=1,2, \ldots$,$) gives an$ isometric and isoenergy diffeomorphism IIDiff due to the integrability. (KdV case: MO 2003, Fujioka-Kurose 2014)

Finite type solutions of the $K d V$ and $M K d V$ hierarchies are given by the hyperelliptic functions! (Its, Matveev, Dubrovin, Novikov, Krichever, Date, Tanaka, ...)

Isometric \& Isoenergy Diffeomorphism, IIDiff VII:

The MKdV hierarchy
Theorem
The finite solution of the MKdV hierarchy is linearized in hyperelliptic Jacobian $\mathcal{J}_{g}=\mathbb{C}^{g} / \Gamma$ where Γ is a certain Iattice $\mathbb{Z}^{2 g}$, i.e., its orbit \mathcal{O} agrees with \mathcal{J}_{g}.

Proposition ($2003 \mathrm{MO}, 2001,2002 \mathrm{M}$)
For a point $Z \in \mathcal{M}_{\text {elas }}^{\mathbb{C}}$ whose orbit \mathcal{O}_{Z} of MKdV flow satisfies " finite type" condition, $\partial_{t_{j+1}} k=\Omega_{i}^{j} \partial_{s} k \equiv 0$, for $j \geq g$, the orbit \mathcal{O}_{Z} is homeomorphic to

$$
\mathcal{O}_{Z} \sim \mathbb{T}^{\ell} / S^{1} \text { for } \ell \leq g \text { and } \mathbb{T}^{\ell} \subset \mathcal{J}_{g}
$$

where \mathbb{T}^{g} is a real torus $\mathbb{T}^{g}:=\Pi^{g} S^{1}$.

Isometric \& Isoenergy Diffeomorphism, IIDiff VIII:
The MKdV hierarchy
Proposition ($2003 \mathrm{MO}, 2001,2002 \mathrm{M}$)
For a point $Z \in \mathcal{M}_{\text {elas }}^{\mathbb{C}}$ whose orbit \mathcal{O}_{Z} of MKdV flow satisfies " finite type" equations,

$$
\partial_{t_{j+1}} k=\Omega_{i}^{j} \partial_{s} k \equiv 0, \quad \text { for } j \geq g
$$

the orbit \mathcal{O}_{Z} is isometric \& isoenergy; for every $Z^{\prime} \in \mathcal{O}_{Z}$,

$$
\mathcal{E}\left[Z^{\prime}\right]=\mathcal{E}[Z], \text { or } Z^{\prime} \in \mathcal{M}_{\mathrm{elas}, \mathcal{E}[Z]}^{\mathbb{C}}
$$

Definition

$$
\mathcal{M}_{\text {elas }, g}^{\mathbb{C}}:=\bigcup_{\mathcal{O}_{Z \sim \mathbb{T}^{\ell} / S^{1}, 1 \leq \ell \leq g}} \mathcal{O}_{Z} \subset \mathcal{M}_{\text {elas }}^{\mathbb{C}}
$$

Isometric \& Isoenergy Diffeomorphism, IIDiff IX: The MKdV hierarchy

1) The solution space contains Euler's results as genus one.
2) The solution of MKdV hierarchy is given by the hyperelliptic curves including ∞ genus.

(a)

(b)

Isometric \& Isoenergy Diffeomorphism, IIDiff \times :

The MKdV hierarchy

Theorem (2003 MO) : Filtration and Inductive Limit

$\mathcal{M}_{\text {elas }}^{\mathbb{C}}$ has a filter structure and is given as the inductive limit of finite solution spaces of isometric \& isoenergy deformation.

$$
\mathcal{M}_{\text {elas }}^{\mathbb{C}}=\lim _{\rightarrow} \mathcal{M}_{\text {elas }, g}^{\mathbb{C}}, \quad \mathcal{M}_{\text {elas }, g}^{\mathbb{C}} \subset \quad \mathcal{M}_{\text {elas }, g+1}^{\mathbb{C}},
$$

Proof: Note that the MKdV hierarchy is an initial problem. For every $Z \in \mathcal{M}_{\text {elas }}^{\mathbb{C}}$, there is an orbit \mathcal{O}_{Z} of the MKdV hierarchy such that $Z \in \mathcal{O}_{Z}$ which is the inductive limit of $\mathcal{M}_{\text {elas }, g}^{\mathbb{C}}$.

Isometric \& Isoenergy Diffeomorphism, IIDiff XI: The MKdV hierarchy

Theorem (Isometric \& Isoenergy Diffeomorphism)
In $\mathcal{M}_{\text {elas }}^{\mathbb{C}}$, the spectrum decomposition

$$
\mathcal{M}_{\mathrm{elas}}^{\mathbb{C}}=\coprod_{E} \mathcal{M}_{\mathrm{elas}, E}^{\mathbb{C}},
$$

and genus filtration induce the decomposition

$$
\mathcal{M}_{\mathrm{elas}}^{\mathbb{C}}=\coprod_{E} \bigcup_{g} \mathcal{M}_{\mathrm{elas}, E, g}^{\mathbb{C}}, \quad \mathcal{M}_{\mathrm{elas}, E, g}^{\mathbb{C}}:=\mathcal{M}_{\mathrm{elas}, E}^{\mathbb{C}} \bigcap \mathcal{M}_{\mathrm{elas}, g}^{\mathbb{C}}
$$

Isometric \& Isoenergy Diffeomorphism, IIDiff XII:

The MKdV hierarchy

The expression of the partition function

$$
\mathcal{W}_{\mathrm{elas}}[\beta]=\sum_{E} \operatorname{Vol}\left(\mathcal{M}_{\mathrm{elas}, E}^{\mathbb{C}}\right) \exp (-\beta E)
$$

formally means that the problem to evaluate the partition function is reduced to

1. determination of the isoenergy flow (orbit), and
2. evaluation of the volume of the flow (orbit), $\operatorname{Vol}\left(\mathcal{M}_{\text {elas }, E}^{\mathbb{C}}\right)$. $\left(\left(\log \operatorname{Vol}\left(\mathcal{M}_{\text {elas }, E}^{\mathbb{C}}\right)\right) / \beta\right.$ is entropy. $)$

6. Topological Properties of
 Moduli of Quantized Elastica

Topological Properties of Moduli of Quantized Elastica I The MKdV hierarchy

Lemma (Maclachlan)
The modulus space of conformal equivalence classes of compact Riemann surfaces of genus g is simply connected.

$$
\begin{array}{r}
\text { For } \mathcal{M}_{\text {elas }, g}^{\mathbb{C}} \rightarrow \mathfrak{M}_{\text {elas }, g}, \quad\left(Z\left(\mathbb{T}^{g}\right) \mapsto p t\right), \text { we have } \\
\mathfrak{M}_{\text {elas }, g} \subset \mathfrak{M}_{\mathrm{hyp}, g}, \quad \mathfrak{M}_{\mathrm{hyp}, g} \sim p t .
\end{array}
$$

Topological Properties of Moduli of Quantized Elastica II The MKdV hierarchy

Lemma (MO 2003)

Due to the relations $\mathcal{M}_{\text {elas }, g}^{\mathbb{C}} \backslash \mathcal{M}_{\text {elas }, g-1}^{\mathbb{C}} \sim \mathbb{T}^{g-1}$ and

$$
p t \hookrightarrow S^{1} \hookrightarrow \mathbb{T}^{2} \hookrightarrow \mathbb{T}^{3} \hookrightarrow \mathbb{T}^{4} \hookrightarrow \mathbb{T}^{5} \hookrightarrow \cdots,
$$

we have

$$
\mathcal{M}_{\mathrm{elas}, 1}^{\mathbb{C}} \hookrightarrow \mathcal{M}_{\mathrm{elas}, 2}^{\mathbb{C}} \hookrightarrow \mathcal{M}_{\mathrm{elas}, 3}^{\mathbb{C}} \hookrightarrow \cdots
$$

Topological Properties of Moduli of Quantized Elastica III Topological Results of Loop Space

Theorem (Bott-Tu)

The cohomology of the loop space ΩS^{n} over S^{n} is given by

$$
\mathrm{H}^{p}\left(\Omega S^{n}, \mathbb{R}\right)=\mathbb{R} \delta_{p \bmod (n-1), 0}
$$

For $n=2$ case, the ring structure is given by

$$
\mathrm{H}^{*}\left(\Omega S^{2}, \mathbb{R}\right)=\mathbb{R}[x] /\left(x^{2}\right) \cdot \mathbb{R}[e]
$$

where degree $(e)=2$ and degree $(x)=1$.

$$
\mathrm{H}^{*}\left(\Omega S^{2}, \mathbb{R}\right)=\mathbb{R}+\mathbb{R} x+\mathbb{R} e+\mathbb{R} x e+\mathbb{R} e^{2}+\mathbb{R} x e^{2}+\cdots
$$

Topological Properties of Moduli of Quantized Elastica IV Topological Results of Loop Space

Since $\mathcal{M}_{\text {elas }}^{\mathbb{C}}$ is topologically decomposed by genus, we have:

Theorem (MO 2003)

For the forgetful functor for: Diff \rightarrow Top, we have

$$
\begin{gathered}
\mathrm{H}^{*}\left(\Omega S^{2}, \mathbb{R}\right)=\mathrm{H}^{*}\left(\operatorname{for}\left(\mathcal{M}_{\mathrm{elas}}^{\mathbb{C}}\right), \mathbb{R}\right) \\
\text { i.e., for } \mathrm{H}^{*}\left(\Omega S^{2}, \mathbb{R}\right)=\mathbb{R}[x] /\left(x^{2}\right) \cdot \mathbb{R}[e], \mathrm{H}^{*}\left(\operatorname{for}\left(\mathcal{M}_{\text {elas }}^{\mathbb{C}}\right), \mathbb{R}\right)= \\
\wedge_{\mathbb{R}}\left[d t_{1}, \epsilon\right] \text {, where } \wedge_{\mathbb{R}}\left[d t_{1}, \epsilon\right] \text { is a ring generated by } d t_{1} \text { and } \\
\epsilon=d t_{1}+d t_{2} \wedge\left(d t_{1} i_{\partial_{1}}\right)+d t_{3} \wedge\left(d t_{1} i_{\partial_{1}}\right)+\cdots
\end{gathered}
$$

with the wedge product and the degree: $\operatorname{degree}\left(d t_{i}\right)=1$:

$$
\mathrm{H}^{*}\left(\operatorname{for}\left(\mathcal{M}_{\mathrm{elas}}^{\mathbb{C}}\right), \mathbb{R}\right)=\mathbb{R}+\mathbb{R} d t_{1}+\mathbb{R} \epsilon+\mathbb{R} \epsilon d t_{1}+\mathbb{R} \epsilon^{2}+\mathbb{R} \epsilon^{2} d t_{1}+\cdots
$$

Topological Properties of Moduli of Quantized Elastica V Topological Approach of Moduli space III

Proof:

Since $\epsilon \cdot 1=d t_{1}$, and $\epsilon^{n-1} \cdot d t_{1}=\epsilon^{n} \cdot 1=d t_{n} \wedge d t_{n-1} \wedge \cdots \wedge d t_{2} \wedge d t_{1}$, we have

$$
\begin{aligned}
\wedge_{\mathbb{R}}\left[d t_{1}, \epsilon\right] & =\mathbb{R}+\mathbb{R} d t_{1}+\mathbb{R} \epsilon+\mathbb{R} \epsilon d t_{1}+\mathbb{R} \epsilon^{2}+\mathbb{R} \epsilon^{2} d t_{1}+\cdots \\
& =\mathbb{R}+\mathbb{R} d t_{1}+\mathbb{R} d t_{1} \wedge d t_{2}+\mathbb{R} d t_{1} \wedge d t_{2} \wedge d t_{3}+\cdots .
\end{aligned}
$$

Due to the Bäcklund transformation, $\mathcal{M}_{\text {elas }}^{\mathbb{C}}$ is topologically given as a telescopic type space related to these genera. Hence we have

$$
\mathrm{H}^{*}\left(\operatorname{for}\left(\mathcal{M}_{\text {elas }}^{\mathbb{C}}\right), \mathbb{R}\right)=\wedge_{\mathbb{R}}\left[d t_{1}, \epsilon\right]
$$

7. Euler's elastica (classical solution) $\mathcal{M}_{\text {elas }, 1}^{\mathbb{C}}$

Euler's elastica (classical solution) I

1. (Deformation $\mathcal{M}_{\text {elas }, 1}^{\mathbb{C}}$)

$$
\begin{gathered}
\partial_{t_{1}} k=\partial_{s} k \\
\partial_{t_{2}} k=\Omega_{i} \partial_{s} k=0 \\
\partial_{s}\left(k \partial_{s}^{-1} k+\partial_{s}\right) \partial_{s} k=0, \quad \partial_{s}\left(k\left(\frac{1}{2} k^{2}+a\right)+\partial_{s}^{2} k\right)=0 \\
\frac{1}{2} k^{3}+a k+b+\partial_{s}^{2} k=0 \\
\frac{1}{4} k^{4}+a k^{2}+2 b k+c+\left(\partial_{s} k\right)^{2}=0
\end{gathered}
$$

Euler's elastica (classical solution) II

2. (Fluctuation) $\int d s k^{2} \rightarrow \int d s\left(k+\delta t \partial_{t} k\right)^{2}$

$$
\begin{aligned}
& =\int d s\left(k+\delta t \Omega_{i} U_{i}\right)^{2} \\
& =\int d s\left(k^{2}+2 \delta t k \Omega_{i} U_{i}+\delta t^{2}\left(\Omega_{i} U_{i}\right)^{2}\right)
\end{aligned}
$$

3. The classical equation (energy minimum): obeying

$$
\frac{2 \delta \int d s \delta t k \Omega_{i} U_{i}}{\delta U_{i}}=0
$$

Euler's elastica (classical solution) III

4. Classical governing equation: $\frac{2 \delta \oint d s \delta t k \Omega_{i} U_{i}}{\delta U_{i}}=0$:

$$
\begin{aligned}
\frac{2 \delta \oint d s \delta t k \Omega_{i} U_{i}}{\delta U_{i}} & =\frac{2 \delta \oint d s \delta t k\left(\partial_{s}^{2}+\partial_{s} k \partial_{s}^{-1} k\right) U_{i}}{\delta U_{i}} \\
& =\frac{2 \delta \oint d s \delta t\left(\partial_{s}^{2} k+\frac{1}{2} k^{3}+a k\right) U_{i}}{\delta U_{i}} \\
\partial_{s}^{2} k & +\frac{1}{2} k^{3}+a k=0 .
\end{aligned}
$$

Euler's elastica (classical solution) IV

5. By integrating it and multiplying k, it becomes SMKdV equation

$$
\begin{gathered}
\partial_{s}\left(k^{2}\right)+2 \partial_{s} \frac{\partial_{s}^{2} k}{k}=0, \quad \rightarrow \quad b+a k^{2}+\frac{1}{4} k^{4}+\left(\partial_{s} k\right)^{2}=0 \\
\left(\partial_{s} k, k\right) \in \widetilde{C}_{1}:=\left\{(\xi, \eta) \left\lvert\, \xi^{2}=-\frac{1}{4} \eta^{4}-a \eta^{2}-4 b\right.\right\}
\end{gathered}
$$

Behind the problem, there exists the elliptic curve and elliptic integral:

$$
s=\int^{k} \frac{d k}{\sqrt{-k^{4} / 4-a k^{2}-4 b}}
$$

Euler's elastica (classical solution) V

6. (Another elliptic curve $(2,3)$) Let

$$
\begin{aligned}
& x:=\frac{1}{4} \sqrt{-1} \partial_{s} k+\frac{1}{8} k^{2}+\frac{1}{4} a, \\
& y:=\frac{1}{2} \partial_{s} x=-\frac{1}{2}\left[\sqrt{-1}\left(-\frac{1}{8} k^{3}-\frac{1}{4} a k+\frac{1}{4} \sqrt{-1} k \partial_{s} k\right)\right] .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& y^{2}=x\left(x-\frac{1}{4} a-\frac{1}{4} \sqrt{b}\right)\left(x-\frac{1}{4} a+\frac{1}{4} \sqrt{b}\right) . \\
& d s=\frac{d x}{2 y}, \quad \sqrt{-1} k=\frac{\partial_{s} x}{x}, \quad \sqrt{-1} \phi=\log (x) .
\end{aligned}
$$

Euler's elastica (classical solution) VI

7. (an elliptic curve $(2,3)$ and Weierstrass \wp function) $\wp \equiv x-a / 6$ where \wp is the Weierstrass \wp function.
8. (Euler's result from modern point of view)

$$
\partial_{s} Z=\mathrm{e}^{\sqrt{-1} \phi}=x / \sqrt{-1}=(\wp(s)+a / 6) / \sqrt{-1}
$$

In other words, we have

$$
Z(s)=(-\zeta(s)+(a / 6) s) / \sqrt{-1}
$$

9. The energy is given as $\oint_{\alpha_{1}} k^{2} d s=-4 \eta^{\prime}+2\left(e_{1}\right) \omega^{\prime}$.

Euler's elastica (classical solution) VII

10. The affine coordinate is proportional to the curvature, or the affine connection.

$$
\begin{gathered}
X-X_{0}=\frac{1}{4} k . \quad: \text { Euler's relation } \\
\wp\left(u-\omega^{\prime}\right)-\wp(u)=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} u} \frac{\wp^{\prime}(u)}{\left(\wp(u)-e_{1}\right)} .
\end{gathered}
$$

11. (Euler's result from modern point of view)

$$
\begin{aligned}
& s=\int^{X} \frac{\lambda^{2} d X}{\sqrt{\lambda^{4}-\left(\alpha+\beta X+\gamma X^{2}\right)^{2}}}, \\
& Y=\int^{X} \frac{\left(\alpha+\beta X+\gamma X^{2}\right) d X}{\sqrt{\lambda^{4}-\left(\alpha+\beta X+\gamma X^{2}\right)^{2}}} .
\end{aligned}
$$

Euler's elastica (classical solution) VIII

Isometric Diffeomorphism, IDiff XIII: Euler's elastica (classical solution) VII

Moduli of Euler's elastica is defined by

$$
\mathcal{M}_{\text {Euler's elas }}^{\mathbb{C}}:=\{\tau: \text { Euler's elastica }\}
$$

Though it is not closed, Euler implicitly found that

$$
\begin{gathered}
\operatorname{dim} \mathcal{M}_{\text {Euler's elas }}^{\mathbb{C}}=1 \text { and } \\
\mathcal{M}_{\text {Euler's elas }}^{\mathbb{C}}=\sqrt{-1} \mathbb{R}_{\geq 0} \cup\left(\frac{1}{2} \sqrt{-1} \mathbb{R}_{\geq 0}\right) \text { up to } \operatorname{SL}(2, \mathbb{C}) .
\end{gathered}
$$

Euler's elastica (classical solution) IX

11. Euler's relation (from viewpoint of complex analysis)

$$
\begin{gathered}
Z-Z_{0}=\partial_{s} \log \partial_{s} Z . \\
\partial_{u}^{2} \log \sigma(u)-\left.\partial_{u}^{2} \log \sigma(u)\right|_{u=\omega}=\frac{\mathrm{e}^{-\eta_{1} z} \sigma\left(u-\omega_{1}\right)^{2}}{\sigma(u)^{2}} .
\end{gathered}
$$

The map $\mathbb{C}^{2} \backslash\{0\} \ni\binom{\psi_{1}}{\psi_{2}} \mapsto \gamma=\frac{\psi_{1}}{\psi_{2}} \in \mathbb{C} P^{1}$ induces
$\mathbb{C}^{2} \backslash\{0\} \ni\binom{\mathrm{e}^{-\eta_{1} z} \sigma\left(u-\omega_{1}\right)^{2}}{\sigma(u)^{2}} \mapsto \partial_{s} \gamma=\frac{\mathrm{e}^{-\eta_{1} z} \sigma\left(u-\omega_{1}\right)^{2}}{\sigma(u)^{2}} \in \mathbb{C} P^{1}$.

Euler's elastica (classical solution) \mathbf{X}

James Bernoulli found the Lemniscate integrals:
$s=\int_{X}^{1} \frac{d X}{\sqrt{1-X^{4}}}, Y=\int_{X}^{1} \frac{X^{2} d X}{\sqrt{1-X^{4}}}$.
Euler found the Legendre relation of the symplectic structure in the Jacobian,

$$
\int_{0}^{1} \frac{d X}{\sqrt{1-X^{4}}} \int_{0}^{1} \frac{X^{2} d X}{\sqrt{1-X^{4}}}=\frac{\pi}{2}
$$

Euler's elastica (classical solution) XI Symplectic Structure

$$
Z(s)=(-\zeta(s)+(a / 6) s) / \sqrt{-1}
$$

The symplectic structure in Jacobian is given by

$$
\langle d s, \zeta(s) d s\rangle=1
$$

and

$$
\omega^{\prime} \eta^{\prime \prime}-\omega^{\prime \prime} \eta^{\prime}=\frac{\pi}{2} \sqrt{-1}
$$

It means that for the space

$$
G:=\left\{(s, Z(s)) \mid s \in S^{1}\right\} \subset S^{1} \times Z\left(S^{1}\right)
$$

$T_{*} G$ has the "symplectic structure" $d s \wedge d Z$.

Euler's elastica (classical solution) XII

12. Circle $X^{2}+Y^{2}=1$.
13. Eight Figure:

The closed loops are only these cases. The shape of the Class 5 is realized by twisting of the circle. The modulus of the eight figure is $\tau=0.70946 \cdots \times \sqrt{-1}$, which corresponds to $\eta^{\prime}=\omega^{\prime} e_{2} / 2$.

8. Quantized Elastica and Hyperelliptic Jacobians

Quantized Elastica and Hyperelliptic Jacobians I

Hyperelliptic Curves

In 1903, Baker gave the KP equation and KdV hierarchy using the bilinear operator and posed the problem similar to Novikov-conjecture starting from the theory of the hyperelliptic curves. H. F. Baker, On a system of differential equations leading to periodic functions, Acta Math. 27 (1903), 135156.

Since 1996, I have studied these hyperelliptic curves and algebraic curves using the Baker and Klein theory (2003 MO, 2001 M, 2002 M, 2007 EEMOP, 2008, EEMOP, 2008 MP, 2012KMP) with Y. Ônishi, V. Enolskii, C. Eilbeck, Y. Kodama, J. Gibbons, and E. Previato.

Quantized Elastica and Hyperelliptic Jacobians II

 Hyperelliptic CurvesA hyperelliptic curve C_{g} of genus $g(g>0)$ is given by,

$$
\begin{aligned}
y^{2}= & \left(x-b_{1}\right)\left(x-b_{2}\right) \cdots \\
& \cdots\left(x-b_{2 g+1}\right),
\end{aligned}
$$

where b_{j} 's are complex numbers.

$$
g=1 \text { case }
$$

Euler's elastica

$$
g=2 \text { case }
$$

Quantized elastica

Quantized Elastica and Hyperelliptic Jacobians II Hyperelliptic Integrals

Hyperelliptic complete integrals:

$$
\begin{aligned}
& \omega_{i j}^{\prime}:=\int_{\alpha_{i}} \nu_{j}^{I}, \quad \omega_{i j}^{\prime \prime}:=\int_{\beta_{i}} \nu_{j}^{I}, \quad i, j=1, \ldots, g \\
& \eta_{i j}^{\prime}:=\int_{\alpha_{i}} \nu_{j}^{I I}, \quad \eta_{i j}^{\prime \prime}:=\int_{\beta_{i}} \nu_{j}^{I I}, \quad i, j=1, \ldots, g
\end{aligned}
$$

where hyperelliptic differentials, 1st and 2 nd kinds:

$$
\nu_{i}^{I}=\frac{x^{i-1} d x}{2 y}, \quad \nu_{i}^{I I}=\frac{\left(x^{g+i-1}+\sum_{j=1}^{g+i-2} a_{i j} x^{j}\right) d x}{2 y}
$$

for certain $a_{i j}$ of b_{i} 's, $(i=1, \ldots, g)$.

Quantized Elastica and Hyperelliptic Jacobians III

Symplectic structure as Legendre relations

Legendre relations as the symplectic structure:

$$
\omega^{\prime} \eta^{\prime \prime}-\omega^{\prime \prime} \eta^{\prime}=\frac{\pi}{2} \sqrt{-1} I_{g}
$$

This is the same as a part of Galois's letter to A. Chevalier:

Quantized Elastica and Hyperelliptic Jacobians IV Hyperelliptic Jacobian

For a symmetric product space of $C_{g}, \mathrm{~S}^{g}\left(C_{g}\right)$, the Abelian map is defined by

$$
\begin{gathered}
u:=\left(u_{1}, \cdots, u_{g}\right): \mathrm{S}^{g}\left(C_{g}\right) \longrightarrow \mathbb{C}^{g} \\
\left(u_{k}\left(\left(x_{1}, y_{1}\right), \cdots,\left(x_{g}, y_{g}\right)\right):=\sum_{i=1}^{g} \int_{\infty}^{\left(x_{i}, y_{i}\right)} \frac{x^{k-1} d x}{2 y}\right) .
\end{gathered}
$$

The hyperelliptic Jacobian:

$$
\mathcal{J}_{g}=\mathbb{C}^{g} / \wedge, \quad \wedge=<\omega^{\prime}, \omega^{\prime \prime}>_{\mathbb{Z}}
$$

Quantized Elastica and Hyperelliptic Jacobians V theta function and sigma function
$\mathbb{T}=\omega^{\prime-1} \omega^{\prime \prime}$. The θ function on \mathbb{C}^{g} with modulus \mathbb{T} and characteristics $\mathbb{T} a+b$ is given by

$$
\begin{aligned}
\theta\left[\begin{array}{l}
a \\
b
\end{array}\right](z) & =\theta\left[\begin{array}{l}
a \\
b
\end{array}\right](z ; \mathbb{T}) \\
& =\sum_{n \in \mathbb{Z}^{g}} \exp \left[2 \pi \sqrt{-1}\left\{\frac{1}{2}^{t}(n+a) \mathbb{T}(n+a)+{ }^{t}(n+a)(z+b)\right\}\right]
\end{aligned}
$$

for g-dimensional complex vectors a and b.
The σ-function is given by

$$
\sigma(u)=\gamma_{0} \exp \left\{-\frac{1}{2} t u \eta^{\prime} \omega^{\prime-1} u\right\} \vartheta\left[\begin{array}{c}
\delta^{\prime \prime} \\
\delta^{\prime}
\end{array}\right]\left(\frac{1}{2} \omega^{\prime-1} u ; \mathbb{T}\right)
$$

where δ and δ^{\prime} are half-integer characteristics.

Quantized Elastica and Hyperelliptic Jacobians VI Hyperelliptic \wp, ζ, and al_{r} functions

$$
\begin{gathered}
\wp_{i j}=-\frac{\partial^{2}}{\partial u_{i} \partial u_{j}} \log \sigma(u) \\
\zeta_{i}=\frac{\partial}{\partial u_{i}} \log \sigma(u) \\
\mathrm{al}_{r}:=\sqrt{\left(b_{r}-x_{1}\right)\left(b_{r}-x_{2}\right) \cdots\left(b_{r}-x_{g}\right)}=\gamma_{0}^{\prime} \frac{\mathrm{e}^{-\eta_{r} u} \sigma\left(u+\omega_{r}\right)}{\sigma\left(\omega_{r}\right) \sigma(u)},
\end{gathered}
$$

Quantized Elastica and Hyperelliptic Jacobians VII Hyperelliptic Solutions and Quantized Elastica

Theorem (2002, 2010 M)

1) For the hyperelliptic curve C_{g}, by lettings $:=u_{g}, Z_{r} \in$ $\mathcal{M}_{\text {elas }, E}^{\mathbb{C}}(r=1,2, \cdots, 2 g+1)$ is given by

$$
\partial_{s} Z_{r}(s)=\mathrm{a} \mathrm{I}_{r}(s)^{2}, \quad Z_{r}(s)=b_{r}^{g} s-\sum_{i=1}^{g} \zeta_{i}(s) b_{r}^{i-1}
$$

2) $Z_{r}\left(u \in \mathcal{J}_{g}\right)$ is isoenergy flows!!!
3) The energy is given by the hyperelliptic integrals:

$$
\oint_{\alpha_{a}} k_{r}^{2} d s=-4 \eta_{a g}^{\prime}+2\left(\lambda_{2 g}+b_{r}\right) \omega_{a g}^{\prime}
$$

4) $\operatorname{Vol}\left(\mathcal{M}_{\text {elas }, E}^{\mathbb{C}}\right)$ is the volume of the real subspace in the Jacobi variety \mathcal{J}_{g}.

Quantized Elastica and Hyperelliptic Jacobians VIII Quantized Elastica and Euler's Elastica

Remark

1) The shape of quantized elastica is

$$
Z_{r}(s)=b_{r}^{g} s-\sum_{i=1}^{g} \zeta_{i}(s) b_{r}^{i-1}
$$

whereas that of Euler's elastica is

$$
Z(s)=(a / 6) s-\zeta(s) \text { for }(Z:=Z(s) / \sqrt{-1})
$$

2) The energy of quantized elastica is

$$
\oint k^{2} d s=-4 \eta_{a g}^{\prime}+2\left(\lambda_{2 g}+b_{r}\right) \omega_{a g}^{\prime}
$$

whereas that of Euler's elastica is

$$
\oint k^{2} d s=-4 \eta^{\prime}+2\left(e_{1}\right) \omega^{\prime}
$$

3) The generalization of Euler's relation is

$$
Z(u)-Z(u-\omega)=\sum_{i}^{g} b^{i-1} \partial_{i} \log \partial_{t_{1}} Z
$$

Quantized Elastica and Hyperelliptic Jacobians IX Quantized Elastica and Euler's Elastica

Remark

4) The shape of quantized elastica is

$$
\begin{aligned}
& \left(\begin{array}{c}
Z_{1} \\
Z_{2} \\
\vdots \\
Z_{g+1}
\end{array}\right)=\left(\begin{array}{cccccc}
b_{1}^{g} & b_{1}^{g-1} & b_{1}^{g-2} & \ldots & b_{1} & 1 \\
b_{2}^{g} & b_{2}^{g-1} & b_{2}^{g-2} & \ldots & b_{2} & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
b_{g+1}^{g} & b_{g+1}^{g-1} & b_{g+1}^{g-2} & \cdots & b_{g+1} & 1
\end{array}\right)\left(\begin{array}{c}
s \\
\zeta_{g} \\
\vdots \\
\zeta_{1}
\end{array}\right) \\
& \left\langle\zeta_{r} d t_{g-r}, d t_{v}\right\rangle=\delta_{r, v} \text { means }\left\langle\sum_{i} \pi_{r, i} Z_{i} d t_{g-r}, d t_{v}\right\rangle=\delta_{r, v}
\end{aligned}
$$

which is a "symplectic structure" in $\mathcal{M}_{\text {elas }}^{\mathbb{C}}$

9. Final Remarks

9. Final Remarks

1. A quantized elastica in (p, q)-dimensional Minkswski space with so (p, q) and generalized MKdV equation.
2. Willmore surface (Polynakov extrinsic string) and MNV hierarchy (M 1999),
3. A geometrical object expressed by generalized Weierstrass representation of submanifold Dirac operator (M 2008, 2009),
4. Diff/SDiff for a manifold which B. Khesin (Arnold-Khesin) considers, or fluid dynamics.

Thanks!

