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1. History of Elastica

(Origin of Variational Principle,
Differential Geometry, Algebraic Geometry,
Elliptic function, Moduli of Elliptic Curves)



History of Elastica I
Preliminary

Immersion:

Z : 81 < C smooth (|8sZ] = 1). Z(s)y=X(s)1Y (s)
Z(s) = X(s) + vV—=1Y(s), t n
t =0,Z =eV—19 ¢ cC®(x"1S1 R)
= Ccos¢p+ /—1sing S
n=+—1t=+-10s2. \
k:R— St

Curvature & Frenet-Serret relation
t:=0sZ, Ost=kn, Osn=—kt, (8°Z=+—1k8sZ), (1)

k := Os¢ : the curvature; £k = 1/ curvature radius.



History of Elastica II
What is elastica?

Elastica is an elastic curve or an ideal thin non-stretching
elastic beam.

the model of a bent paper, a bent rod, wire, rope and so on.

The elastica problem was proposed {
by James (Jacob) Bernoulli (1654- N Y
1705) in 1691: n

‘““‘What shape does an elastica have
in a plane?”’




History of Elastica III
Oriain of elastica
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Leonardo da Vinci (1452-1519)



History of Elastica IV
Origin of elastica

Leonardo da Vinci (1452-1519) drew the pictures of bent
beams




History of Elastica V
Oridin of elastica
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Galileo Galilei (1564-1654)
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History of Elastica VI
Origin of elastica

Galileo Galilei (1564-
1654) Iinvestigated bent
beams.

It is a problem of cantilever.
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History of Elastica VII
Oriain_of elastica

James Bernoulli (1654-1705)
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History of Elastica VIII

Origin of elastica

James Bernoulli (1654-1705) proposed the Elastica prob-
lem and found the fact that the elastic force is proportional

1 4dx
to k¥ and the Lemniscate integral: s = / .
X /1 L X4
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History of Elastica IX
Lemniscate and Elastica
James Bernoulli defined the Lemniscate curve of eight fig-

ure.

AN

A P

mnt

3c. Class 5

Elastica of Eight-Figure
delas-tangential angle

Lemniscate
(22 + 42)2 = 2a2(z? — 32)
dlemni-tangential angle3
Plemni = §¢elas [M 1995]
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History of Elastica X
Oriain of elastica

Daniel Bernoulli (1700-1782)
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History of Elastica XI

Classical Elastica Problem
Daniel Bernoulli (1700-1782) discovered the least principle 1738

in a letter to Euler (1707-1783).

e ™
An elastica is realized as the least
point of the energy, v

/S s K2(s) = /S L ds (8s6(5))° n

= Slg_ldg*g_ldg, g€ u()
N Y > v

Elastica problem is the oldest harmonic map problem.
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History of Elastica XII
Oriain of elastica
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Euler (1707-1783)
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History of Elastica XIII
“Methodus inveniendi lineas curvas” 1744 " Method”

METHODUS

INVENIENDI

LINEAS CURVAS

Maximi Minimive proprictatc gaudentes,
SIVE

SOLUTIO

PROBLEMATIS 1SOPERIMETRICI
LATISSIMO SENSU ACCEPTL

AUCTORE

LEONHARDO EULERO:
Drofeffore Regﬁ; s €9 Academie fmf}ﬁg!& Scitntin-

o B
o - Pl :.\'\"IIJI

58 Sy
LAUSANNAE & GENEV A,
Apud MARGUM-MICHAELEM BousQUET & Socos. .

MDCCXLIV
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History of Elastica XIV
Euler’s Classical Results of Elastica : 1744 " Method”

- /X A\2dX
VM = (a+ BX +4X2)% Y
v /X (a4 BX +vX2)dX s
VA = (a+ BX +7Xx2)2
Euler relation (M-Previato 2014)

X(s)—Xo = zk(s)
affine coordinate o« affine connection
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History of Elastica XV
Euler’'s Classical Results of Elastica (1744)
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History of Elastica XVI
Euler’s Classical Results of Elastica (1744)

It is related to

Harmonic Map S1 —U(1),
Variational Method

. Curve as Differential Geometry
. Curve as Algebraic Geometry
Elliptic Function

Moduli of Elliptic Curves

O G R W N
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2. Motivation

Quantization of Elastica
(Statistical Mechanics of Elasticas)

quantization of geometry
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Motivation I: Quantization of Elastica

Pictures of DNAs by atomic force microscopes shows the
supercoils.

Pictures of DNAs by atomic force microscopes

Double-coiled

These shapes are super-coils
rather than double coils.
Super-coil is weakly governed by
the elastic force!

Spercoiled DNA
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Motivation II: Quantization of Elastica

Too simple Complicate

Why the shapes of super-coiled DNA due to
elastic force are complicate?
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Motivation III: Quantization of Elastica

The reasons why the shapes of super-coiled DNA are complicate
are several ones: the chemical effects, stretching effects, the
solvent effects, the heat effects and so on.

I have been studying a statistical mechanics of
—> elastica, which I call quantized elastica due to

h<+/—1/8.

In order to understand the quantization of geometrical ob-
jects, we consider the quantized elastica.
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Motivation IV:
Physical Motivation: Partition Function of Elasticas

T he partition function of the quantized elastica at the temper-
ature T :=1/p3, is formally given by

Weiasld] = [ . DZexp(=pE[2]),

elas
with energy for the curvature k

£[7] = ]{dsk%
for its domain
ME =178 > fdz — o, |82 = 1}/ ~,

where ~ means the euclidean moves, and trivial coordinate trans-
formation: gs,Z(s) = Z(s — sg) for gsg € U(1).

26



Motivation V :
Mathematical Motivation: Moduli of Quantized Elastica

e R
It is a mathematical problem how we classify the moduli of
iIsometric loops,

ME  ={z:5! > jq{dz — o, |82 = 1}/ ~,

from viewpoints of the energy,

£[7] = ja{dsk?

This is a loop space in category of differential geometry.
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Motivation VI :
Mathematical Motivation: Moduli of Quantized Elastica

N
/It IS @ mathematical problem how we evaluate the moduli of
iIsometric loops with isoenergy FE,

C C cC __ C
Melas,E — {Z S Melas | 5[Z] — E}> Melas — HMeIas,Ev
E

in order to evaluate

WelaslB] = /OOO dE VOI(/\/l(eCjaS,E) exp(—BFE).

This is an isometric and isoenergy loop space.

Since wild curves have higher energy than the others, we can
assume that the map Z is analytic.
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Motivation VII :
Mathematical Motivation: Moduli of Quantized Elastica

We wish to investigate M, /\/le,aS »and M§ . 0s7

/\/le|aS = {Z : 8! — C : analytic | j{dZ =27, |0sZ| =1}/ ~,
MelasE ={Z ¢ Melas | £[Z] = B},
Melas ,SO(2) — =1{0sZ2 | Z € Melas}

/\/le|aS so2) C Mso) =1/ st - sO(2) : analytic }.

SO(2) trivially acts on M&__ or a stabilizer, i.e.,

elas
QQZ =Z € Melasa (QHZ(S) — Z(S - 9))
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3. Infinitesimal Isometric Diffeo. idiff

Isometric Diffeomorphism (IDIFF)
= Arc-length preserving Diffeomorphism

= Non-stretching deformation (Curve flow)

Infinitesimal Isometric Diffeomorphism (idiff = dIDIFF|¢)
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Infinitesimal Isometric Diffeo. idiff II:
Complex analysis viewpoint 1

1

1st: tangential angle b = — log Z'(sg)
1 Z"(sp)

2nd: curvature k.= =0

VT Z(sq) ¢

Z"(s0) 3 (2"(s0)\
{Z,sotsp = Jis) o\

3rd: Schwarz derivative (s0) (s0)

= (\/——183k - %lﬂ)

Euler-Bernoulli energy function is given by

E[Z] = -2 %{Z, stgpds = ]{kzds.
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Infinitesimal Isometric Diffeo. idiff I:
Complex analysis viewpoint II

Complex analysis viewpoint shows:

Proposition Tjurin (1974) (s1 < sg < s2)

1 Z(s2) —Z(s1) 1 . 11|Z2"(sg)
> log 59 — 51 =5 log Z'(sg) |+ 551 Z(s0) (s1+ s2)
11 (2"(s0) 3 (Z"(s0)\°|, 2, o
‘|‘§3! Z’(so) —Z (Z’(So)> ] (82‘|‘81)
11]{2"(sq) 3 (Z2"(s0)\?
231 | Z(s0) _5<Z’(so)> 1 (1s2)

The left hand side appears in the Lagrange inversion formula,
Replicable function, dKP theory and so on.
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Infinitesimal Isometric Diffeo. ioijf III:
Infinitesimal Isometric Deformation 1

. Let us consider the fiber TZMelas of the tangent space T/\/lelas
at Z ¢ Melas, or the infinitesimal flow of t € (—¢,¢) in Me|as

at Z;

t:(—ee) = M., and consider 8;Z|,—o.

. There is a trivial flow fixing a point Z ¢ Melas,

MhZ = cOsZ, ceR, or Z(s)=Z(s+ ct).
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Infinitesimal Isometric Diffeo. i0iff IV:
Infinitesimal Isometric Deformation II

3. For the isometric (non-
stretching, arc-length preserv-
ing) deformation parameter
t € (—e,e), the non-stretching 0S
condition is 6‘[

[8¢,85)Z = 0O ot

4. The non-stretching condition
[0¢,0s]Z = 0 means

0s



Infinitesimal Isometric Diffeo. idiff V:
Infinitesimal Isometric Deformation III
4. By letting

A1 (R) :=C¥(S1,R), A% (C) :=c¥(Sh,0),
and
Aél(R) . C¥ (St R)-valued one form of S1,
we consider the non-stretching condition of
0 Z(s) = U(s)0sZ = (Ur(s) + vV—1U;(5))0sZ
for

U=Ur+vV—1U; € A2:(C) and U, U; € A% (R).
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Infinitesimal Isometric Diffeo. i0iff VI:
Infinitesimal Isometric Deformation 1V

6. The non-stretching condition [0, 0s]Z = 0 leads the following
relations (Goldstein-Petrich 1991);

8;(8s2) = eV 19 = \/Z18,6 857,
0s(0tZ) = 0s[(Ur + v—1U;)0sZ]
= [(0sUr — kU;) + vV —1(0sU; + kUy)] 0sZ.

—> (83Ufr — kUZ) — O, and 8t¢ — (asU/L _I_ kar),

OsUr = kU;, and Ok = 9s(9sU; + k07 1kU;)
Ur = 07 1kU;, = (02 + 9sk0; k) U;.
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Infinitesimal Isometric Diffeo. idiff VII:

Infinitesimal Isometric Deformation V

7. 0sUr = kU; (U, = 07 1kU;) means the so(2)-condition,
o (U _( O Kk
\U; ) 7 \0sk—1os 0

8. 0sUr = kU; (9sUrds = kU;ds) also means the injection,

by : Agl (R) — d-Agl (R) C A}g1 (R),
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Infinitesimal Isometric Diffeo. idiff VIII:
Infinitesimal Isometric Deformation VI

9. Note that for c € R, 8;Z = cdsZ means a trivial flow in MS__,
and thus ¢; (dU, = ¢4(U;)) induces

br :U;— Uy, Ay Agl(R) — Agl(R),

up to the constant translation, and thus

S
<£7~(Ui) —a +/ ¢,(U;)ds for a € R such that fﬁr(UZ-)ds — o)
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Infinitesimal Isometric Diffeo. idiff IX:
Infinitesimal Isometric Deformation VII

~ Proposition (Brylinski 1993) ~

The fiber TZMgaS at 7 € Mg,as is bijection to Agl(R) by

TyMgas ~ AL (R), (8:Z2 = €(U;)0sZ, U; € A% (R)),

where ¢ @ A%, (R) — A2;(C), (¢ := & + v/—Tid), for U; €
A% (R)).

N J

The tangential space is determined by the velocity U, for
the normal direction.

Note that ¢ ¢ A3, (R).
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Infinitesimal Isometric Diffeo. i0iff X:
Infinitesimal Isometric Deformation VIII

~ Proposition

The curvature k in Ty;MS . at Z € M§, . is given by

Ok = QU; U; € A4 (R),

where

Q; 1= 0s(kd; Tk + 05).

The curvature k is given by

kds = dlogg = g tdg, g e SO(2).

40




4. Infinitesimal Isometric & Isoenergy
Diffeo., ii0iff

C C
For Z ¢ Melas,E C Melas'

i C C
consider TzMgiys p C Tz Mgss-

41



Infinitesimal Isometric & Isoenergy Diffeo. iidiff I:

Lemma
For U; € A%, (R), the deformation 8,Z = ((U;)dsZ or
Otk = 95(kd; 1k 4+ 95)U; is not isoenergy in general.

Proof:
OE = O, f K2ds = 26 jf kkds = 7{ ks (k0T Tk + 85)Uyds
— szas(kaglwi) + zjfkaSQUz-ds
— ]f (8sk) kO LkUyds + 2 ]f (82k)Uyds
__ 7{(83(k2))88_1kUids 4 zf(afk)Uids
_ j{kaUids ., 7{ (82k)Uzds = 7{ (k3 + 202K)Uids. W
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff II:

The related loop group of M&__:

C _ C
Melas,SO(Q) =1{0sZ2 | Z € Melas,Sl} C Mso(2)-

~ Key Fact 1: Trivial deformation
1. There is a trivial isometric & isoenergy diffeomorphism,

hZ = 0sZ with 0Otk = 0sk, s0(2)
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff III:

~ Lemma
For Agl,C(R) = {we AL (R) | %w = 0}, we have Agljc(IR{) =
dAZ (R). (Ker(§) = dAG, (R).)

N

~

J

Proof: For F € CY(R,R) such that w = dF, the condition ]{w =

F(2r) — F(0) = 0 means that F € C*(S1,R) = A%;(R).

~ Proposition

i€ vanishes iff kdikds € dA% (R) i.e., 3f € A%, (R) such that

K Ok lds =|0sflds € dAZ: (R).

N

J

Proof: 0, = O 7{ k2ds :]{ koitkds = O means fé Osfds = 0 due to

Lemma. B
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff IV:

Key Facts for iidiff
Key Fact 1: A trivial deformation 0; k = 9sk.
Key Fact 2: iff: 0k = ;U;, osUyr = kU,

Key Fact 2:

k Oik| = |0sf | in Proposition recalls KU!| = |9sU/.|.
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~ Key Fact 3: Proposition

Infinitesimal Isometric & Isoenergy Diffeo. iidiff V:

The isometric diffeomorphisms with ¢,¢ € (—¢,¢),

If

N

07z = b(U;)0sZ = (Upr +V—1U;)0sZ, (Ok = ;U;)

OuZ = U(U)O0sZ = (U. + /—1U))0sZ, (0yk = ;U})
with £ 1 A%, (R) — dA% (R), | kU] = 05U | and kU; = dsUy.

Otk = U!|, the energy

5,€ vanishes| 9, = ]fds kdk = 0.

Proof: atf::zj[ds katkzzjfds kngzjfds OU =0 m

Ok = Q;U;.

and

Opk = QU! = Q,0tk = Q2U;
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff VI:

~ Key Fact 3: Corollary
The infinitesimal isometric diffeomorphism 0;Z = ¢(U;)0sZ is
iIsoenergy, If there exists another infinitesimal isometric dif-
feomorphism t/, 0yZ = £(0:k)0sZ, i.e.,

8t/k — Qiatk — QZQU,L

~

Ascendant relations:
Isometric t is iIsoenergy! < disometric t’:@t/k = 2,0tk
Isometric ¢’ is isoenergy! <« Jisometric t":0,1k = Q;0,k.

Isometric ¢ is isoenergy! <« Jisometric t"":0,mk = $2,;0,k.

a7



Infinitesimal Isometric & Isoenergy Diffeo. iidiff VII:

~ Summary of Key Facts ~
Key Fact 1: A trivial deformation is Isometric and isoen-
ergy! 6;Z = (14 0v—-1)0sZ, 01tk = 0Osk,
7{ kdkds = j[%aslc?ds —0
Key Fact 3: iidiff is given as a sequence of idiff.
Isometric ¢ is isoenergy! «+ Jisometric t":0,k = Qiatkj

N

~ Remark ~
The trivial deformation 0:k = dsk should be regarded that

there might exist a flow of ¢’ for .
Ak = QOk = Qosk, (Ul = 8k, Ul = §k2),

1
81;/2 — (§k2 _I_ V —185k) 832 — _{Z,S}SDﬁsz.
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff VIII:
~ Key Fact 4: Lemma

The deformation

1
Oyk = Qosk (U] = 9sh, Ul = 2k,

1
at/Z = (Ekz + \V/ —183k) 832 — —{Z,S}SDasz,

Kis isoenergy.

Proof:
O = 2 j{ kdyk ds
— ]{ (k3 + 202k)dskds
= f0.GH* + (0,1))ds.m
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff IX:

Ascendant infinitesimal isometric & isoenergy relations from
the trivial relation

Ot k = Osk. s0(2)
Ok = $2;01 k = 2,05k, Nso(2)
gk = Qdk = Q70 k = Q7 sk, Aso(2)
Ok = Q0 k = Q20 k = QP k = QP 0sk, Aso(2)
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff X:
The MKdV hierarchy

Bk = ok (0 =1,2,...,) is the MKdV hierarchy:

atlk — 83]{ — O,

3
Dy ke — EkQaSk — 3k =0,

5 5 15
Oy k — 10kdskdZk — §kza§k - 5(ask)?’ - gk‘lask — 92k =0,

The MKdAV hierarchy 6,k = Qf_lagk (¢{=1,2,...,) are isomet-
ric and isoenergy.
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff XI:

~ Fact 5. Lemma (Finite Dimension Condition) ~

If for ¢ > g + 1, 8t£k = Q,f_lagk = 0 or ty, does not give a
deformation essentially, ¢, is also a trivial isometric & isoenergy
kdiffeomorphism.

J

Proof: 9, = o, f 2ds = 2 7{ kOikds = O W
This makes dZ = 0y, Zdty + 6t3Zdt3 + -4 8thdtg: finite dimen-
sion;

dimRTZMgaS,E =g — 1.
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff XII:

~ Summary of Key Facts N
Key Fact 1: Trivial deformation 0; k = 0Osk,

Key Fact 2: 2iff: 0k = Q;U;, Q; := 9s(0s + ko5 1k).

Key Fact 3: iidiff is given as a sequence of idiff.

Isometric t is isoenergy! <« Jisometric t":0yk = $2;0:k

Key Fact 4: 0;,k = €,;0sk.

Key Fact 5: Finite Dimension Condition 9k =0 for £ > g.
N J
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff XIII:

Ascendant relations from the trivial relation

Ot k = Osk. 50(2)
Otk = §2;0 k = $2;0sk, Nso(2)
Ok = $2;01,k = antlk — Q%@Sk, Nso(2)
Bk = Qb .k = Q0 k = Q30 k = QPosk, Aso(2)
O,y k=0 trivial
O,k =0 trivial
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff XIV:
The MKdV hierarchy

Ok = Qf_lagk ({=1,2,...,9) is the MKdV hierarchy:
(9751]6 — 88k — 0,
3
Oy k — EkQaSk — 83k =0,

5 5 15
Oy k — 10kDskdZk — EkQafk - 5(8316)3 - Ek“ask — 92k = 0,

QY9sk = 0
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff XV:

~ Key Fact 1: Trivial deformation

1. There is a trivial isometric & isoenergy diffeomorphism,

8751]6 — ask, 50(2)

~ Key Fact 1’: Lemma

By considering 8;10 = ¢ € R and by letting ¢ = 1, we have

dsk = €2;0 = (82 + 9skd; 1k)O0,

and thus

8t1k — QZ’O.
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff XVI:

[0 Q;\ [ 0 )
By, k Q O, k
Ok | = Q; Oty ke
k) \ AT

This induces

dZ = 01Zdt1 + 0xZdto + 03Zdtz + - - - + 0gZdtg,
and s0(2)WtD®_actions (¢ =0,1,---,9),

Os —k\ (1 s —k\ (07 1kQb0sk
= O L — O
—85k—183 83 O ’ —ask?_las 88 Qfask

(Adams-Harnad-Previato CMP 1988, Adler-Kostant-Symes
system for loop algebra. (Previato-M 2014)
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5. Isometric & Isoenergy Diffeo., IIDiff

(Pedit 1998, MO 2003, Fujioka-Kurose 2013)
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Isometric & Isoenergy Diffeo., IIDiff I
Quantized Elastica in CPl 1

 : C2\ {0} — CP1,

<$1> — = (Y1 : Y2)
>
(5]

ForIpQ#Or’y:%

PSL5(C) acts on CP1 by

ay + b
C’)/—|—d.
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Isometric & Isoenergy Diffeo., IIDiff II
Quantized Elastica in CP! II

|

MEMO = 1y 81 5 €2\ {0}

elas

| det(¢,s) = 1}.

J«

|

C2\ {0} > (ﬁ) up to SLQ(C).} —> [

-

Solution (:ﬁ;) up SLo(C) of
(—332 - %{% S}SD) Y =0,
det(+,s) = 1.

~

MEP = {y: 851 = CP!

elas

| |8s’7| — 1}'

CP! >~ = (¢1:92) up to
PSL,(C).

-

{~,s}sp up to PSL>(C).
b = (\/—_17/\/%)
i \/_1/\/8/)’
with det(4y, d:1,) = 1.
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Isometric & Isoenergy Diffeo., IIDiff III
Quantized Elastica in CP! III

-

Isometric Deformation
The arc-length preserving deformation:

v 1 ST x (=€) » CPL
such that by letting 9; := 9/0t,

(0¢0s — 0s0t) vt = [0, Os]v+ = O.
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Isometric & Isoenergy Diffeo., IIDiff IV

Quantized Elastica in CP! 1v
- Lemma ~
The arc-length preserving deformation is given by

O = (A(s, 1) + B(s,1)0s)4y,
for functions A(s,t) and B(s,t) of C°(St x [0, 1],C) such that

\883(8’ t) = —2A(s,t).

J
s Lemma ~N
For the arc-length preserving deformation, u = {vg,s}sp/2
satisfies

where Ou = —Qep1A

Qep10s = (92 + 2uds + 20,u).
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Isometric & Isoenergy Diffeo., IIDiff V
Quantized Elastica in CPl v

1
Oy uzgﬂgplasu, (n=0,1,...,) (2)

n

[0t 8tj]7t(s) = 0 (4,75 = 0,...,) is Korteweg-de Vries(KdV)
hierarchy which preserves the energy:
n=0: O0u-+ Idsu=0,
n=1: O0yu-+ 6udsu+ &g’u =0,
n=2: O,u-+ 30u2(93u + 20(95u(982u
+ 10uddu 4 82u = 0.
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Isometric & Isoenergy Diffeomorphism, IIDiff VI:
MKdV and KdV Hierarchies

The MKdV hierarchy 8,k = Q7 9k (£ = 1,2,...,) gives an
iIsometric and isoenergy diffeomorphism IIDiff due to the in-
tegrability. (KdV case: MO 2003, Fujioka-Kurose 2014)

Finite type solutions of the KdV and MKdV hierarchies are given

by the hyperelliptic functions! (Its, Matveev, Dubrovin,
Novikov, Krichever, Date, Tanaka, ---)
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Isometric & Isoenergy Diffeomorphism, IIDiff VII:
The MKdV hierarchy

~ Theorem ~
The finite solution of the MKdAV hierarchy is linearized

in hyperelliptic Jacobian J, = CJ9/I" where I is a certain
lattice 729, i.e., its orbit O agrees with 7.

N J
~ Proposition (2003 MO, 2001,2002 M) N
For a point Z ¢ M{_. whose orbit O; of MKdV flow

satisfies " finite type” condition, 8tj+1k = Q{@Sk = 0, for
7 > g, the orbit Oz is homeomorphic to

O, ~ TSt for £ < g and T¢ C 7,,

 where T9 is a real torus T9 := [’ Si. )
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Isometric & Isoenergy Diffeomorphism, IIDiff VIII:
The MKdV hierarchy

~ Proposition (2003 MO, 2001,2002 M) N

For a point 7 c Me,as whose orbit O, of MKdV flow
satisfies " finite type” equations,

Otk = 2]osk = 0, for j > ¢,

the orbit Oy is isometric & isoenergy; for every 7' ¢ Oy,

EZ'1 =E&[Z], or Z' € Melasg[z]

Definition
C
Melas,g U Oz C Melas-
Oz~Tt/51,1<e<yg
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Isometric & Isoenergy Diffeomorphism, IIDiff IX:

The MKdV hierarchy

1) The solution space con-

tains Euler’s results as O @
genus one.

2) The solution of MKdV hi-

erarchy is given by the hy-
perelliptic curves Includ- @

iINg oo genus.
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Isometric & Isoenergy Diffeomorphism, IIDiff X:
The MKdV hierarchy

~ Theorem (2003 MO) : Filtration and Inductive Limit —

Melas has a filter structure and is given as the inductive
limit of finite solution spaces of isometric & isoenergy
deformation.

ME

elas —

C
_mMeIas,g' Melas,g C Melas ,g+1’

Proof: Note that the MKdV hierarchy is an initial problem. For
every Z € /\/le|as, there is an orbit 07 of the MKdV hierarchy

such that Z € Oz which is the inductive limit of Melasg H
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Isometric & Isoenergy Diffeomorphism, IIDiff XI:
The MKdV hierarchy

~ Theorem (Isometric & Isoenergy Diffeomorphism) ——

In M¢ the spectrum decomposition

elas HMelas E>

and genus filtration induce the decomposition

elas H U Melas g0 Melas E,g elas E ﬂ Melas,g

elas?
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Isometric & Isoenergy Diffeomorphism, IIDiff XII:
The MKdV hierarchy

The expression of the partition function
WelaslB] = ZVC)'(MgaS,E) exp(—B8E)
E
formally means that the problem to evaluate the partition
function is reduced to
1. determination of the isoenergy flow (orbit), and
2. evaluation of the volume of the flow (orbit), Vol(MS__ ).

elas,FE
((log Vol(MSaS’E))/B is entropy.)
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6. Topological Properties of
Moduli of Quantized Elastica
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Topological Properties of Moduli of Quantized Elastica I
The MKdV hierarchy

~ Lemma (Maclachlan) ~
The modulus space of conformal equivalence classes of
compact Riemann surfaces of genus g is simply con-

knected . )

elas,g (Z(T9) — pt), we have

g7

melas,g C imhyp,g’ imhylo,g ~ pt.
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Topological Properties of Moduli of Quantized Elastica II
The MKdV hierarchy

~ Lemma (MO 2003)

Due to the relations Mg,s  \ Mgjas,_1 ~ T97 ! and

pt—= St T2 T3 s T s T2 s .. |

we have

C C C
Meias.1 = Meglaso = Mglasz — -
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Topological Properties of Moduli of Quantized Elastica III
Topological Results of Loop Space

~ Theorem (Bott-Tu)

The cohomology of the loop space 25" over S™ is given by
Hp(QSn,R) — R(SP mod (n_l)’o

For n = 2 case, the ring structure is given by
H*(£25%,R) = R[z]/(z®) - Rle],

where degree(e) = 2 and degree(x) = 1.

H*(2S%,R) = R + Rz 4+ Re + Rxe + Re? + Rxe? + - - - .
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Topological Properties of Moduli of Quantized Elastica IV
Topological Results of Loop Space

Since /\/lgaS is topologically decomposed by genus, we have:

~ Theorem (MO 2003) ~
For the forgetful functor for : Dif f — Top, we have

H*(£252,R) = H*(for(M$,.), R)

e, for H(QS2,R) = Rlz]/(2?) - R[e], H*(for(MS,0),R) =
Agr[dty, €], where Agr[dty,€] is a ring generated by dt; and

e =dt1 + dto A (dtligl) + dtz A (dtliﬁl) + -
with the wedge product and the degree: degree(dt;) = 1:

H*(for(M$..), R) = R+ Rdtq + Re + Redtq + Re? +Redtq + - - - .
\_ J
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Topological Properties of Moduli of Quantized Elastica V
Topological Approach of Moduli space III

~ Proof:

Since e-1 =dt1, and e 1.dt;1 = €1 = dtnAdt,,_1A- - -AdtoAdtq,

we have

Arldti, ] = R + Rdt; + Re + Redt; + Re? + Re?dty + - -
= R 4+ Rdt1 + Rdtq1 Adto + Rdt1 Adio ANdtz 4+ --- .

Due to the Backlund transformation, MC

elas

is topologically

given as a telescopic type space related to these genera.

Hence we have

H*(for(M$,0), R) = Agldty, €.

~
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7. Euler’s elastica (classical solution)
ME
elas,1
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Euler’s elastica (classical solution) I

1. (Deformation Mg, ;)

8tlk' — ask',

1
05 (kO 1k + 85)0sk = 0, s (k (518 + a) + a§k> —0.

k3 +ak + b+ 02k = 0.

Tk% + ak? 4+ 2bk + ¢ + (95k)? = 0.
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Euler’s elastica (classical solution) II

2. (Fluctuation) / dsk? — / ds(k + 5t0k)?

_ /ds(k + 51Q,U;)2
— / ds(k2 + 26tkSuU; + 5t2(QU;)2)

3. The classical equation (energy minimum): obeying

20 [ dsdtkS2;U; — 0
SU; -
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Euler’s elastica (classical solution) III

. . . 2 Q,;U;
4. Classical governing equation: Md;‘g’“ iVi _ .
7

26 § dsotkSu;U; 26 § dsotk(92 + 9sk0; 1k)U;
oU; - oU;

26 §dsst(92k + 5k3 + ak)U;
o SU;

1
852k—|—§k3—|—ak = 0.
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Euler’'s elastica (classical solution) IV

5. By integrating it and multiplying k, it becomes SMKdV
equation

02k
8s(k?) + 205 =0, — |b+ak®+ k% + (0sk)2 = 0.
~ 1
(Dsk, k) € Cq 1= {(S,n)\fz = _1”4 —an® — 46-}
Behind the problem, there exists the elliptic curve and elliptic
integral:
A

-

A /\, S:/k dk
\/ U V—k*/4 — ak? — 4b
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Euler’'s elastica (classical solution) V

6. (Another elliptic curve (2,3)) Let

1 1, 1
= —v/—10sk + =k —a,
x 4 s -|-8 -|-4a

1 1 1 1 1
= 05z = —— [\/—1 (——k:3 — Zak 4+ =v/=1kod k)] .
R s 28T 5 s
T hen we have A

pocle-be e doe ).
U

) >
s = ¢ \/——lk:a‘gx, V—1¢ = log(z). \

o 2y’ T
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Euler’s elastica (classical solution) VI

. (an elliptic curve (2,3) and Weierstrass g function)
© =x — a/6 where p is the Weierstrass g function.

. (Euler’s result from modern point of view)

9sZ = eV~1¢ = 2/v/~1 = (p(s) + a/6)/v/—1.

In other words, we have

Z(s) = (=((s) + (a/6)s)/v—1,

. The energy is given as f k2ds = —4n + 2(eq)o.
a1
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Euler’'s elastica (classical solution) VII

10. The affine coordinate is proportional to the curvature,
or the affine connection.

1
X —Xp= Zk' ‘Euler’s relation

_ W) — uzld o' (u)
plu—w) — p(u) 2du (o) — 1)’

11. (Euler’'s result from modern point of view)
/X \2dX

S = ,

VA% — (o + BX +4X2)2

Y:/X (a4 BX +9X2)dX
VM = (a4 BX +7X2)2
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Euler’s elastica (classical solution) VIII

€

g s3e|D)
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Isometric Diffeomorphism, IDiff XIII:
Euler’'s elastica (classical solution) VII

Moduli of Euler’s elastica is defined by

J\/l(E:mQr/S olas \= {7 : Euler’s elastica}

Though it is not closed, Euler implicitly found that

. C .
dlmj\/lEuIer’s elas — 1 and

1
ME Lieris elas = V—1R>q U (5 V=IRz0)up to SL(2,C).
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Euler’'s elastica (classical solution) IX

11. Euler’s relation (from viewpoint of complex analysis)

Z — Zog = 0slog 0sZ.

82 log o(u) — 82109 o () |u=w = 5
o(u)

The map C2\ {0} > <$1> =y = ¥1 e CP! induces
2

P2

e Mg (u — wq)?

(CQ\{O} 5 <e_nlzgéz)g w1)2> s as"}’ _ e—ng(u — w1)2
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Euler’'s elastica (classical solution) X

James Bernoulli found the Lemnis-
cate integrals:

X2dX

1 dX 1
— ,Y:/ _
> /X'/l—X4 X'/l—X4

Euler found the Legendre relation
of the symplectic structure in the
Jacobian,

1 X2dX

[ e
0 l_X4O 1 - x4 2
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Euler’'s elastica (classical solution) XI
Symplectic Structure

Z(s) = (—((s) + (a/6)s) /v -1,

T he symplectic structure in Jacobian is given by
(ds,((s)ds) =1
and
w’n” — w”n/ = g\/——l :
It means that for the space
G = {(s,2(s))|s € 81} c st x Z(s1)
T«G has the ‘“symplectic structure” ds A dZ.
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Euler’'s elastica (classical solution) XII
12. Circle X2 4+Y?2=1.

13. Eight Figure;
The closed |loops are only these

cases. The shape of the Class 5 i

is realized by twisting of the circle. [m
The modulus of the eight figure ( A c
is 7 = 0.70946--- x v/—1, which ’

3c. Class 5
corresponds to n' = wes/2. o A
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8. Quantized Elastica and Hyperelliptic
Jacobians
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Quantized Elastica and Hyperelliptic Jacobians 1

Hyperelliptic Curves
In 1903, Baker gave the KP equation and KdV hierar-

chy using the bilinear operator and posed the problem similar
to Novikov-conjecture starting from the theory of the hyperellip-
tic curves. H. F. Baker, On a system of differential equations leading to
periodic functions, Acta Math. 27 (1903), 135156.

Since 1996, I have studied these hyperelliptic curves and
algebraic curves using the Baker and Klein theory (2003
MO, 2001 M, 2002 M, 2007 EEMOP, 2008, EEMOP, 2008
MP, 2012KMP) with Y. Onishi, V. Enolskii, C. Eilbeck, Y.
Kodama, J. Gibbons, and E. Previato.
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Quantized Elastica and Hyperelliptic Jacobians II
Hyperelliptic Curves

A hyperelliptic curve A A
Cy of genus g (¢ > 0)
is given by, > O O >

A\
> (4
y< =(x —b1)(x —bp) -

(= bogq1),
where b;'s are complex g =1 case g = 2 case
numbers.

Euler’'s elastica Quantized elastica
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Quantized Elastica and Hyperelliptic Jacobians II

Hyperelliptic Integrals

Hyperelliptic complete integrals :

/. I " . I .

B Vs B Vs 1,7=1,...,9
) 3 1 ) ) ) v 9
J o J J B; J

/. 11 "no.__ 11 e
772] _/Oz Vj ) 777,3 _/,3 Vj ) 'L,]—l,...,g,

() ()

where hyperelliptic differentials, 1st and 2nd Kkinds:

: . ) -
CUZ_]'CZQU II (wg—l-z 1 _I_ Zg_zl_?j_ a”ijxj)dx
v, = ; | —
Z 2y Z 2y
for certain a;; of b;'s, (i =1,...,9).
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Quantized Elastica and Hyperelliptic Jacobians III
Svymplectic structure as Legendre relations

Legendre relations as the symplectic structure:
S — My = g V=1 I

This is the same as a part of Galois’s letter to A. Chevalier:

s ¥ ] & & _' f. ] r;# tﬂ" o -
e ‘;.-ll'.l am g, Exm b A o -I-.-":'__?--"'t

n"}"'

Tk l
v A T g
o Do Forntin, P r’m:-.-.:.._ copr -

.Er-.r
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Quantized Elastica and Hyperelliptic Jacobians IV
Hyperelliptic Jacobian

For a symmetric product space of Cy, S9(Cy), the Abelian map
is defined by

u = (uy, - ,ug) : SYI(Cqy) — CI,
9. (i) 2FLldg
(Uk((xl,yl), 7($gayg)) - Z;l /OO 2y ) .

The hyperelliptic Jacobian:
TJg=CI/N, N=<d ">y.
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Quantized Elastica and Hyperelliptic Jacobians V
theta function and sigma function

T = o' ", [The 6 function| on €9 with modulus T and charac-
teristics Ta + b is given by

0 [Z] (2) QH (2:T)
= ¥ en[2nvS 1S 4 0T+ o)+ it a)G+b)]]

nez9
for g-dimensional complex vectors a and b.

The o-function| is given by

1 _ mo1 -
o(u) = ypexp {—5 tun'w’ 1u} 19[%,] (Ew/ 1u; T)

where § and ¢ are half-integer characteristics.
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Quantized Elastica and Hyperelliptic Jacobians VI
Hyperelliptic p, ¢, and al, functions

82
= — lo
§247 (9%&'(9’&]' go(u),

0

Uj

G = log o(u)

aly 1= \/(br —x1)(br —22) - (br —zg) = 7

, e g (u 4 wy)

o(wr)o(u)

Y
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Quantized Elastica and Hyperelliptic Jacobians VII
Hyperelliptic Solutions and Quantized Elastica

~ Theorem (2002, 2010 M) ~
1) For the hyperelliptic curve C4, by lettings := u4, Z; €

MGasp (r=1,2,---,2g+1) is given by

9 .
05Zr(s) = alr(s)2,  Zr(s) =bis — Y G(s)bi L.
i=1
2) Zr(u € Jy) is isoenergy flows!!!
3) The energy is given by the hyperelliptic integrals:

 K2ds =~y + 2000 + bk
Oq

4) Vol(j\/lgaS ) is the volume of the real subspace in the

Jacobi variety J;.
N J
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Quantized Elastica and Hyperelliptic Jacobians VIII
Quantized Elastica and Euler’s Elastica

~ Remark
1) The shape of quantized elastica is

Zr(s) = birs — _q Gi(s)bi L,
whereas that of Euler’s elastica is

Z(s) = (a/6)s — ((s) for (Z := Z(s)//—1).

2) The energy of quantized elastica is
k2ds = —4ng + 2(A2g + br)weg,
whereas that of Euler’s elastica is
7{ k2ds = —4n' 4+ 2(e1)w.
3) The generalization of Euler’s relation is
Z(u) — Z(u—w) = 76719109 6, Z.
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Quantized Elastica and Hyperelliptic Jacobians IX

Quantized Elastica and Euler’s Elastica

~ Remark
4) The shape of quantized elastica is
71 (v »07Y b972 b 1) /s
—1 —2
Zop | _ | b5 b5 b5 oo by 1|
Z 441 b9 vt B9 o p 1) \&1
g \Pg+1 g1 by41 g+1 1)

N

<C’I"dtg—7"7 dtfv> — 57"1) means <Z 7T’I",7:Z’l:dtg—7"7 dtfv> — 57"1),

1

which is a ‘“symplectic structure” in M

C
elas*
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9. Final Remarks

102



9. Final Remarks

. A quantized elastica in (p,q)-dimensional Minkswski space
with so(p,q) and generalized MKdV equation.

. Willmore surface (Polynakov extrinsic string) and MNV hi-
erarchy (M 1999),

. A geometrical object expressed by generalized Weierstrass
representation of submanifold Dirac operator (M 2008, 2009),

. Diff/SDiff for a manifold which B. Khesin (Arnold-Khesin)
considers, or fluid dynamics.
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T hanks!
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