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1. History of Elastica

(Origin of Variational Principle,
Differential Geometry, Algebraic Geometry,
Elliptic function, Moduli of Elliptic Curves)
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History of Elastica I

Preliminary

Immersion:

Z : S1 ↪→ C smooth (|∂sZ| = 1).

Z(s) = X(s) +
√
−1Y (s),

t = ∂sZ = e
√
−1φ, φ ∈ C∞(κ−1S1,R)

= cosφ+
√
−1 sinφ

n =
√
−1t =

√
−1∂sZ.

κ : R→ S1

Curvature & Frenet-Serret relation
t := ∂sZ, ∂st = kn, ∂sn = −kt, (∂2

sZ =
√
−1k∂sZ), (1)

k := ∂sφ : the curvature; k = 1/ curvature radius.
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History of Elastica II
What is elastica?

Elastica is an elastic curve or an ideal thin non-stretching

elastic beam.

the model of a bent paper, a bent rod, wire, rope and so on.

The elastica problem was proposed

by James (Jacob) Bernoulli (1654-

1705) in 1691:

‘‘What shape does an elastica have

in a plane?’’
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History of Elastica III
Origin of elastica

Leonardo da Vinci (1452-1519)
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History of Elastica IV
Origin of elastica

Leonardo da Vinci (1452-1519) drew the pictures of bent

beams
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History of Elastica V
Origin of elastica

Galileo Galilei (1564-1654)

10



History of Elastica VI
Origin of elastica

Galileo Galilei (1564-

1654) investigated bent

beams.

It is a problem of cantilever.
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History of Elastica VII
Origin of elastica

James Bernoulli (1654-1705)
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History of Elastica VIII
Origin of elastica

James Bernoulli (1654-1705) proposed the Elastica prob-

lem and found the fact that the elastic force is proportional

to k and the Lemniscate integral: s =
∫ 1

X

dX√
1−X4

.
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History of Elastica IX
Lemniscate and Elastica

James Bernoulli defined the Lemniscate curve of eight fig-

ure.

Lemniscate

(x2 + y2)2 = 2a2(x2 − y2)

φlemni:tangential angle

Elastica of Eight-Figure

φelas:tangential angle

φlemni =
3

2
φelas [M 1995]
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History of Elastica X
Origin of elastica

Daniel Bernoulli (1700-1782)
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History of Elastica XI

Classical Elastica Problem
Daniel Bernoulli (1700-1782) discovered the least principle 1738

in a letter to Euler (1707-1783).

� �
An elastica is realized as the least

point of the energy,∫
S1
ds k2(s) =

∫
S1
ds (∂sφ(s))2

=
∫
S1
g−1dg ∗ g−1dg, g ∈ U(1)

� �
Elastica problem is the oldest harmonic map problem.
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History of Elastica XII
Origin of elastica

Euler (1707-1783)
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History of Elastica XIII
“Methodus inveniendi lineas curvas” 1744 ”Method”
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History of Elastica XIV

Euler’s Classical Results of Elastica : 1744 ”Method”

s =
∫ X λ2dX√

λ4 − (α+ βX + γX2)2
,

Y =
∫ X (α+ βX + γX2)dX√

λ4 − (α+ βX + γX2)2
.

Euler relation (M-Previato 2014)

X(s)−X0 = 1
4k(s)

affine coordinate ∝ affine connection
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History of Elastica XV

Euler’s Classical Results of Elastica (1744)
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History of Elastica XVI

Euler’s Classical Results of Elastica (1744)

It is related to

1. Harmonic Map S1 →U(1),

2. Variational Method

3. Curve as Differential Geometry

4. Curve as Algebraic Geometry

5. Elliptic Function

6. Moduli of Elliptic Curves
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2. Motivation

Quantization of Elastica

(Statistical Mechanics of Elasticas)

quantization of geometry
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Motivation I: Quantization of Elastica

Pictures of DNAs by atomic force microscopes shows the
supercoils.

Pictures of DNAs by atomic force microscopes

These shapes are super-coils

rather than double coils.

Super-coil is weakly governed by

the elastic force!
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Motivation II: Quantization of Elastica

Too simple Complicate� �

� �

� �

� �

→ Why the shapes of super-coiled DNA due to

elastic force are complicate?

24



Motivation III: Quantization of Elastica

The reasons why the shapes of super-coiled DNA are complicate

are several ones: the chemical effects, stretching effects, the

solvent effects, the heat effects and so on.

7→
I have been studying a statistical mechanics of

elastica, which I call quantized elastica due to

~↔
√
−1/β.

In order to understand the quantization of geometrical ob-

jects, we consider the quantized elastica.
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Motivation IV:

Physical Motivation: Partition Function of Elasticas

The partition function of the quantized elastica at the temper-

ature T := 1/β, is formally given by

Welas[β] =
∫
MC

elas

DZ exp(−βE[Z]),

with energy for the curvature k

E[Z] :=
∮
dsk2,

for its domain

MC
elas := {Z : S1 → C|

∮
dZ = 2π, |∂sZ| = 1}/ ∼,

where ∼ means the euclidean moves, and trivial coordinate trans-

formation: gs0Z(s) = Z(s− s0) for gs0 ∈ U(1).
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Motivation V :

Mathematical Motivation: Moduli of Quantized Elastica
� �
It is a mathematical problem how we classify the moduli of

isometric loops,

MC
elas = {Z : S1 → C|

∮
dZ = 2π, |∂sZ| = 1}/ ∼,

from viewpoints of the energy,

E[Z] :=
∮
dsk2.

� �

This is a loop space in category of differential geometry.
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Motivation VI :
Mathematical Motivation: Moduli of Quantized Elastica

� �
It is a mathematical problem how we evaluate the moduli of

isometric loops with isoenergy E,

MC
elas,E = {Z ∈MC

elas | E[Z] = E}, MC
elas =

∐
E

MC
elas,E,

in order to evaluate

Welas[β] =
∫ ∞

0
dE Vol(MC

elas,E) exp(−βE).
� �

This is an isometric and isoenergy loop space.

Since wild curves have higher energy than the others, we can
assume that the map Z is analytic.
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Motivation VII :
Mathematical Motivation: Moduli of Quantized Elastica

We wish to investigateMC
elas,M

C
elas,E andMC

elas,∂sZ.

MC
elas = {Z : S1 → C : analytic |

∮
dZ = 2π, |∂sZ| = 1}/ ∼,

MC
elas,E = {Z ∈MC

elas | E[Z] = E},
MC

elas,SO(2) = {∂sZ | Z ∈MC
elas}.

MC
elas,SO(2) ⊂MSO(2) := {f : S1 → SO(2) : analytic }.

SO(2) trivially acts on MC
elas or a stabilizer, i.e.,

gθZ = Z ∈MC
elas, (gθZ(s) = Z(s− θ)).
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3. Infinitesimal Isometric Diffeo. idiff

Isometric Diffeomorphism (IDIFF)

≡ Arc-length preserving Diffeomorphism

≡ Non-stretching deformation (Curve flow)

Infinitesimal Isometric Diffeomorphism (idiff = dIDIFF|e)
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Infinitesimal Isometric Diffeo. idiff II:
Complex analysis viewpoint I

1st: tangential angle φ =
1√
−1

logZ′(s0)

2nd: curvature k :=
1√
−1

Z′′(s0)

Z′(s0)
= ∂sφ

3rd: Schwarz derivative
{Z, s0}SD =

Z′′′(s0)

Z′(s0)
−

3

2

(
Z′′(s0)

Z′(s0)

)2


=
(√
−1∂sk −

1

2
k2
)
.

Euler-Bernoulli energy function is given by

E[Z] := −2
∮
{Z, s}SDds =

∮
k2ds.
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Infinitesimal Isometric Diffeo. idiff I:
Complex analysis viewpoint II

Complex analysis viewpoint shows:

Proposition Tjurin (1974) (s1 < s0 < s2)

1

2
log

Z(s2)− Z(s1)

s2 − s1
=

1

2
logZ′(s0) +

1

2

1

2!

Z′′(s0)

Z′(s0)
(s1 + s2)

+
1

2

1

3!

Z′′′(s0)

Z′(s0)
−

3

4

(
Z′′(s0)

Z′(s0)

)2
 (s2

2 + s2
1)

+
1

2

1

3!

Z′′′(s0)

Z′(s0)
−

3

2

(
Z′′(s0)

Z′(s0)

)2
 (s1s2) + · · · ,

The left hand side appears in the Lagrange inversion formula,
Replicable function, dKP theory and so on.
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Infinitesimal Isometric Diffeo. idiff III:
Infinitesimal Isometric Deformation I

1. Let us consider the fiber TZMC
elas of the tangent space TMC

elas
at Z ∈ MC

elas, or the infinitesimal flow of t ∈ (−ε, ε) in MC
elas

at Z;

t : (−ε, ε)→MC
elas, and consider ∂tZ|t=0.

2. There is a trivial flow fixing a point Z ∈MC
elas,

∂tZ = c∂sZ, c ∈ R, or Z(s) = Z(s+ ct).
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Infinitesimal Isometric Diffeo. idiff IV:
Infinitesimal Isometric Deformation II

3. For the isometric (non-

stretching, arc-length preserv-

ing) deformation parameter

t ∈ (−ε, ε), the non-stretching

condition is

[∂t, ∂s]Z = 0

4. The non-stretching condition

[∂t, ∂s]Z = 0 means

∂s∂tφ = ∂t∂sφ = ∂tk.
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Infinitesimal Isometric Diffeo. idiff V:
Infinitesimal Isometric Deformation III

4. By letting

A0
S1(R) := Cω(S1,R), A0

S1(C) := Cω(S1,C),

and

A1
S1(R) : Cω(S1,R)-valued one form of S1,

we consider the non-stretching condition of

∂tZ(s) = U(s)∂sZ = (Ur(s) +
√
−1Ui(s))∂sZ

for

U = Ur +
√
−1Ui ∈ A0

S1(C) and Ur, Ui ∈ A0
S1(R).
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Infinitesimal Isometric Diffeo. idiff VI:
Infinitesimal Isometric Deformation IV

6. The non-stretching condition [∂t, ∂s]Z = 0 leads the following

relations (Goldstein-Petrich 1991);

∂t(∂sZ) = ∂te
√
−1φ =

√
−1∂tφ ∂sZ,

∂s(∂tZ) = ∂s[(Ur +
√
−1Ui)∂sZ]

= [(∂sUr − kUi) +
√
−1(∂sUi + kUr)] ∂sZ.

7→ (∂sUr − kUi) = 0, and ∂tφ = (∂sUi + kUr),

7→ ∂sUr = kUi, and ∂tk = ∂s(∂sUi + k∂−1
s kUi)

Ur = ∂−1
s kUi, = (∂2

s + ∂sk∂−1
s k)Ui.
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Infinitesimal Isometric Diffeo. idiff VII:

Infinitesimal Isometric Deformation V

7. ∂sUr = kUi (Ur = ∂−1
s kUi) means the so(2)-condition,

∂s

(
Ur
Ui

)
=

(
0 k

∂sk−1∂s 0

)

8. ∂sUr = kUi (∂sUrds = kUids) also means the injection,

`d : A0
S1(R) → dA0

S1(R) ⊂ A1
S1(R),

Ui 7→ dUr = ∂sUrds = kUids = `d(Ui).
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Infinitesimal Isometric Diffeo. idiff VIII:
Infinitesimal Isometric Deformation VI

9. Note that for c ∈ R, ∂tZ = c∂sZ means a trivial flow in MC
elas,

and thus `d (dUr = `d(Ui)) induces

`r : Ui 7→ Ur, `r : A0
S1(R)→ A0

S1(R),

up to the constant translation, and thus(
`r(Ui) = a+

∫ s
`d(Ui)ds for a ∈ R such that

∮
`r(Ui)ds = 0

)
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Infinitesimal Isometric Diffeo. idiff IX:
Infinitesimal Isometric Deformation VII

Proposition (Brylinski 1993)� �
The fiber TZMC

elas at Z ∈MC
elas is bijection to A0

S1(R) by

TZMC
elas ≈ A

0
S1(R), (∂tZ = `(Ui)∂sZ, Ui ∈ A0

S1(R)),

where ` : A0
S1(R) → A0

S1(C), (` := `r +
√
−1id), for Ui ∈

A0
S1(R)).� �

The tangential space is determined by the velocity Ui for

the normal direction.

Note that φ 6∈ A0
S1(R).
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Infinitesimal Isometric Diffeo. idiff X:

Infinitesimal Isometric Deformation VIII

Proposition� �
The curvature k in TZMC

elas at Z ∈MC
elas is given by

∂tk = ΩiUi Ui ∈ A0
S1(R),

where

Ωi := ∂s(k∂
−1
s k + ∂s).� �

The curvature k is given by

kds = d log g = g−1dg, g ∈ SO(2).
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4. Infinitesimal Isometric & Isoenergy
Diffeo., iidiff

For Z ∈MC
elas,E ⊂M

C
elas,

consider TZMC
elas,E ⊂ TZM

C
elas.
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff I:

Lemma� �
For Ui ∈ A0

S1(R), the deformation ∂tZ = `(Ui)∂sZ or

∂tk = ∂s(k∂−1
s k + ∂s)Ui is not isoenergy in general.� �

Proof:

∂tE = ∂t

∮
k2ds = 2∂t

∮
k∂tkds =

∮
k∂s(k∂

−1
s k + ∂s)Uids

= 2
∮
k∂s(k∂

−1
s kUi) + 2

∮
k∂2
sUids

= −2
∮

(∂sk)k∂−1
s kUids+ 2

∮
(∂2
s k)Uids

= −
∮

(∂s(k
2))∂−1

s kUids+ 2
∮

(∂2
s k)Uids

=
∮
k2kUids+ 2

∮
(∂2
s k)Uids =

∮
(k3 + 2∂2

s k)Uids. �
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff II:

The related loop group of MC
elas:

MC
elas,SO(2) = {∂sZ | Z ∈MC

elas,S1} ⊂ MSO(2).

Key Fact 1: Trivial deformation� �
1. There is a trivial isometric & isoenergy diffeomorphism,

∂tZ = ∂sZ with ∂tk = ∂sk, so(2)� �
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff III:
Lemma� �

For A0
S1,c

(R) := {ω ∈ A1
S1(R) |

∮
ω = 0}, we have A0

S1,c
(R) =

dA0
S1(R). (Ker(

∮
) = dA0

S1(R).)� �
Proof: For F ∈ Cω(R,R) such that ω = dF , the condition

∮
ω =

F (2π)− F (0) = 0 means that F ∈ Cω(S1,R) ≡ A0
S1(R). �

Proposition� �
∂tE vanishes iff k∂tkds ∈ dA0

S1(R) i.e., ∃f ∈ A0
S1(R) such that

k ∂tk ds = ∂sf ds ∈ dA0
S1(R).� �

Proof: ∂tE = ∂t

∮
k2ds =

∮
k∂tkds = 0 means

∮
∂sfds = 0 due to

Lemma. �
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff IV:

Key Facts for iidiff� �
Key Fact 1: A trivial deformation ∂t1k = ∂sk.

Key Fact 2: idiff: ∂tk = ΩiUi, ∂sUr = kUi� �

Key Fact 2:� �
k ∂tk = ∂sf in Proposition recalls k U ′i = ∂sU ′r .

� �
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff V:

Key Fact 3: Proposition� �
The isometric diffeomorphisms with t, t′ ∈ (−ε, ε),

∂tZ = `(Ui)∂sZ = (Ur +
√
−1Ui)∂sZ, (∂tk = ΩiUi)

∂t′Z = `(U ′i)∂sZ = (U ′r +
√
−1U ′i)∂sZ, (∂t′k = ΩiU

′
i)

with `d : A0
S1(R)→ dA0

S1(R), kU ′i = ∂sU ′r and kUi = ∂sUr.

If ∂tk = U ′i , the energy ∂tE vanishes , ∂tE =
∮
ds k∂tk = 0.

� �
Proof: ∂tE = 2

∮
ds k∂tk = 2

∮
ds kU ′i = 2

∮
ds ∂sU

′
r = 0 �

∂tk = ΩiUi. and ∂t′k = ΩiU
′
i = Ωi∂tk = Ω2

i Ui
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff VI:

Key Fact 3: Corollary� �
The infinitesimal isometric diffeomorphism ∂tZ = `(Ui)∂sZ is

isoenergy, if there exists another infinitesimal isometric dif-

feomorphism t′, ∂t′Z = `(∂tk)∂sZ, i.e.,

∂t′k = Ωi∂tk = Ω2
i Ui.� �

Ascendant relations:

Isometric t is isoenergy! ← ∃isometric t′:∂t′k = Ωi∂tk

Isometric t′ is isoenergy! ← ∃isometric t′′:∂t′′k = Ωi∂t′k.

Isometric t′′ is isoenergy! ← ∃isometric t′′′:∂t′′′k = Ωi∂t′′k.

......
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff VII:

Summary of Key Facts� �
Key Fact 1: A trivial deformation is Isometric and isoen-

ergy! ∂tZ = (1 + 0
√
−1)∂sZ, ∂tk = ∂sk,∮

k∂tkds =
∮ 1

2
∂sk

2ds = 0

Key Fact 3: iidiff is given as a sequence of idiff.

Isometric t is isoenergy! ← ∃isometric t′:∂t′k = Ωi∂tk� �
Remark� �

The trivial deformation ∂tk = ∂sk should be regarded that

there might exist a flow of t′ for

∂t′k = Ω∂tk = Ω∂sk, (U ′i = ∂tk, U
′
r =

1

2
k2),

∂t′Z =
(

1

2
k2 +

√
−1∂sk

)
∂sZ = −{Z, s}SD∂sZ.

� �
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff VIII:
Key Fact 4: Lemma� �

The deformation

∂t′k = Ω∂sk (U ′i = ∂sk, U
′
r =

1

2
k2),

∂t′Z =
(

1

2
k2 +

√
−1∂sk

)
∂sZ = −{Z, s}SD∂sZ,

is isoenergy.� �

Proof:

∂t′E = 2
∮
k∂t′k ds

=
∮

(k3 + 2∂2
s k)∂skds

=
∮
∂s(

1

4
k4 + (∂sk)2)ds.�
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff IX:

Ascendant infinitesimal isometric & isoenergy relations from

the trivial relation

∂t1k = ∂sk.

∂t2k = Ωi∂t1k = Ωi∂sk,

∂t3k = Ωi∂t2k = Ω2
i ∂t1k = Ω2

i ∂sk,

∂t4k = Ωi∂t2k = Ω2
i ∂t2k = Ω3

i ∂t1k = Ω3
i ∂sk,

......

so(2)

Λso(2)

Λso(2)

Λso(2)

......
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff X:

The MKdV hierarchy

∂t`k = Ω`−1
i ∂sk (` = 1,2, . . . , ) is the MKdV hierarchy:

∂t1k − ∂sk = 0,

∂t2k −
3

2
k2∂sk − ∂3

s k = 0,

∂t3k − 10k∂sk∂
2
s k −

5

2
k2∂3

s k −
5

2
(∂sk)3 −

15

8
k4∂sk − ∂5

s k = 0,

The MKdV hierarchy ∂t`k = Ω`−1
i ∂sk (` = 1,2, . . . , ) are isomet-

ric and isoenergy.
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff XI:

Fact 5. Lemma (Finite Dimension Condition)� �
If for ` ≥ g + 1, ∂t`k = Ω`−1

i ∂sk ≡ 0 or t` does not give a

deformation essentially, t` is also a trivial isometric & isoenergy

diffeomorphism.� �

Proof: ∂tE = ∂t

∮
k2ds = 2

∮
k∂tkds = 0 �

This makes dZ = ∂t2Zdt2 + ∂t3Zdt3 + · · ·+ ∂tgZdtg: finite dimen-

sion;

dimRTZMC
elas,E = g − 1.
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff XII:

Summary of Key Facts� �
Key Fact 1: Trivial deformation ∂t1k = ∂sk,

Key Fact 2: idiff: ∂tk = ΩiUi, Ωi := ∂s(∂s + k∂−1
s k).

Key Fact 3: iidiff is given as a sequence of idiff.

Isometric t is isoenergy! ← ∃isometric t′:∂t′k = Ωi∂tk

Key Fact 4: ∂t2k = Ωi∂sk.

Key Fact 5: Finite Dimension Condition ∂t`k = 0 for ` > g.� �
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff XIII:

Ascendant relations from the trivial relation

∂t1k = ∂sk.

∂t2k = Ωi∂t1k = Ωi∂sk,

∂t3k = Ωi∂t2k = Ω2
i ∂t1k = Ω2

i ∂sk,

∂t4k = Ωi∂t2k = Ω2
i ∂t2k = Ω3

i ∂t1k = Ω3
i ∂sk,

......
∂tg+1k = 0

∂tg+2k = 0

so(2)

Λso(2)

Λso(2)

Λso(2)

......
trivial

trivial
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff XIV:

The MKdV hierarchy

∂t`k = Ω`−1
i ∂sk (` = 1,2, . . . , g) is the MKdV hierarchy:

∂t1k − ∂sk = 0,

∂t2k −
3

2
k2∂sk − ∂3

s k = 0,

∂t3k − 10k∂sk∂
2
s k −

5

2
k2∂3

s k −
5

2
(∂sk)3 −

15

8
k4∂sk − ∂5

s k = 0,

...

Ωg
i ∂sk = 0
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff XV:

Key Fact 1: Trivial deformation� �
1. There is a trivial isometric & isoenergy diffeomorphism,

∂t1k = ∂sk, so(2)� �

Key Fact 1’: Lemma� �
By considering ∂−1

s 0 = c ∈ R and by letting c = 1, we have

∂sk = Ωi0 = (∂2
s + ∂sk∂

−1
s k)0,

and thus

∂t1k = Ωi0.� �
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Infinitesimal Isometric & Isoenergy Diffeo. iidiff XVI:


0
∂t1k
∂t2k...
∂tgk

 =


Ωi

Ωi
Ωi

. . .
Ωi




0
∂t1k
∂t2k...
∂tgk

 .

This induces

dZ = ∂1Zdt1 + ∂2Zdt2 + ∂3Zdt3 + · · ·+ ∂gZdtg,

and so(2)(g+1)⊕-actions (` = 0,1, · · · , g),(
∂s −k

−∂sk−1∂s ∂s

)(
1
0

)
= 0,

(
∂s −k

−∂sk−1∂s ∂s

)(
∂−1
s kΩ`

i∂sk

Ω`
i∂sk

)
= 0.

(Adams-Harnad-Previato CMP 1988, Adler-Kostant-Symes
system for loop algebra. (Previato-M 2014)
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5. Isometric & Isoenergy Diffeo., IIDiff

(Pedit 1998, MO 2003, Fujioka-Kurose 2013)
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Isometric & Isoenergy Diffeo., IIDiff I

Quantized Elastica in CP1 I

ψ : C2 \ {0} → CP1,(
ψ1
ψ2

)
7→ γ := (ψ1 : ψ2)

For ψ2 6= 0, γ =
ψ1

ψ2
PSL2(C) acts on CP1 by

gm : γ 7→
aγ + b

cγ + d
.

59



Isometric & Isoenergy Diffeo., IIDiff II

Quantized Elastica in CP1 II
� �
MC2\{0}

elas := {ψ : S1 → C2 \ {0}
| det(ψ,ψs) = 1}.� �

↔
� �

MCP 1

elas := {γ : S1 → CP 1

| |∂sγ| = 1}.� �
� �
C2 \ {0} 3

(
ψ1

ψ2

)
up to SL2(C).

� �
→

� �
CP 1 3 γ = (ψ1 : ψ2) up to

PSL2(C).� �
� �

Solution

(
ψ1

ψ2

)
up SL2(C) of(

−∂2
s −

1

2
{γ, s}SD

)
ψ = 0,

det(ψ,ψs) = 1.� �

←

� �
{γ, s}SD up to PSL2(C).

ψγ :=

(√
−1γ/

√
∂zγ√

−1/
√
∂zγ

)
with det(ψγ, ∂zψγ) = 1.� �
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Isometric & Isoenergy Diffeo., IIDiff III

Quantized Elastica in CP1 III

Isometric Deformation� �
The arc-length preserving deformation:

γt : S1 × (−ε, ε)→ CP1

such that by letting ∂t := ∂/∂t,

(∂t∂s − ∂s∂t)γt = [∂t, ∂s]γt = 0.� �
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Isometric & Isoenergy Diffeo., IIDiff IV

Quantized Elastica in CP1 IV
Lemma� �

The arc-length preserving deformation is given by

∂tψt = (A(s, t) +B(s, t)∂s)ψt,
for functions A(s, t) and B(s, t) of C∞(S1 × [0,1],C) such that

∂sB(s, t) = −2A(s, t).� �
Lemma� �

For the arc-length preserving deformation, u := {γR, s}SD/2

satisfies

∂tu = −ΩCP1Awhere

ΩCP1∂s = (∂3
s + 2u∂s + 2∂su).� �
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Isometric & Isoenergy Diffeo., IIDiff V

Quantized Elastica in CP1 V

∂tnu =
1

2
Ωn

CP1∂su, (n = 0,1, . . . , ) (2)

[∂ti, ∂tj]γt(s) = 0 (i, j = 0, . . . , ) is Korteweg-de Vries(KdV)

hierarchy which preserves the energy:

n = 0 : ∂t0u+ ∂su = 0,

n = 1 : ∂t1u+ 6u∂su+ ∂3
s u = 0,

n = 2 : ∂t2u+ 30u2∂su+ 20∂su∂
2
s u

+ 10u∂3
s u+ ∂5

s u = 0.
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Isometric & Isoenergy Diffeomorphism, IIDiff VI:

MKdV and KdV Hierarchies

The MKdV hierarchy ∂t`k = Ω`−1
i ∂sk (` = 1,2, . . . , ) gives an

isometric and isoenergy diffeomorphism IIDiff due to the in-

tegrability. (KdV case: MO 2003, Fujioka-Kurose 2014)

Finite type solutions of the KdV and MKdV hierarchies are given

by the hyperelliptic functions! (Its, Matveev, Dubrovin,

Novikov, Krichever, Date, Tanaka, · · · )
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Isometric & Isoenergy Diffeomorphism, IIDiff VII:
The MKdV hierarchy

Theorem� �
The finite solution of the MKdV hierarchy is linearized

in hyperelliptic Jacobian Jg = Cg/Γ where Γ is a certain

lattice Z2g, i.e., its orbit O agrees with Jg.� �
Proposition (2003 MO, 2001,2002 M)� �

For a point Z ∈ MC
elas whose orbit OZ of MKdV flow

satisfies ”finite type” condition, ∂tj+1k = Ωj
i∂sk ≡ 0, for

j ≥ g, the orbit OZ is homeomorphic to

OZ ∼ T`/S1 for ` ≤ g and T` ⊂ Jg,

where Tg is a real torus Tg :=
∏g S1.� �
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Isometric & Isoenergy Diffeomorphism, IIDiff VIII:
The MKdV hierarchy

Proposition (2003 MO, 2001,2002 M)� �
For a point Z ∈ MC

elas whose orbit OZ of MKdV flow

satisfies ”finite type” equations,

∂tj+1k = Ωj
i∂sk ≡ 0, for j ≥ g,

the orbit OZ is isometric & isoenergy; for every Z′ ∈ OZ,

E[Z′] = E[Z], or Z′ ∈MC
elas,E[Z].

� �
Definition� �

MC
elas,g:=

⋃
OZ∼T`/S1,1≤`≤g

OZ ⊂MC
elas.

� �
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Isometric & Isoenergy Diffeomorphism, IIDiff IX:

The MKdV hierarchy

1) The solution space con-

tains Euler’s results as

genus one.

2) The solution of MKdV hi-

erarchy is given by the hy-

perelliptic curves includ-

ing ∞ genus.
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Isometric & Isoenergy Diffeomorphism, IIDiff X:

The MKdV hierarchy

Theorem (2003 MO) : Filtration and Inductive Limit� �
MC

elas has a filter structure and is given as the inductive

limit of finite solution spaces of isometric & isoenergy

deformation.

MC
elas = lim→M

C
elas,g, MC

elas,g ⊂ MC
elas,g+1,

� �

Proof: Note that the MKdV hierarchy is an initial problem. For

every Z ∈ MC
elas, there is an orbit OZ of the MKdV hierarchy

such that Z ∈ OZ which is the inductive limit of MC
elas,g. �
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Isometric & Isoenergy Diffeomorphism, IIDiff XI:

The MKdV hierarchy

Theorem (Isometric & Isoenergy Diffeomorphism)� �
In MC

elas, the spectrum decomposition

MC
elas =

∐
E

MC
elas,E,

and genus filtration induce the decomposition

MC
elas =

∐
E

⋃
g
MC

elas,E,g, MC
elas,E,g :=MC

elas,E

⋂
MC

elas,g.

� �
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Isometric & Isoenergy Diffeomorphism, IIDiff XII:

The MKdV hierarchy

The expression of the partition function

Welas[β] =
∑
E

Vol(MC
elas,E) exp(−βE)

formally means that the problem to evaluate the partition

function is reduced to

1. determination of the isoenergy flow (orbit), and

2. evaluation of the volume of the flow (orbit), Vol(MC
elas,E).

((log Vol(MC
elas,E))/β is entropy.)

70



6. Topological Properties of
Moduli of Quantized Elastica
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Topological Properties of Moduli of Quantized Elastica I

The MKdV hierarchy

Lemma (Maclachlan)� �
The modulus space of conformal equivalence classes of

compact Riemann surfaces of genus g is simply con-

nected.� �

For MC
elas,g →Melas,g, (Z(Tg) 7→ pt), we have

Melas,g ⊂Mhyp,g, Mhyp,g ∼ pt.
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Topological Properties of Moduli of Quantized Elastica II

The MKdV hierarchy

Lemma (MO 2003)� �
Due to the relations MC

elas,g \M
C
elas,g−1 ∼ Tg−1 and

pt ↪→ S1 ↪→ T2 ↪→ T3 ↪→ T4 ↪→ T5 ↪→ · · · ,

we have

MC
elas,1 ↪→M

C
elas,2 ↪→M

C
elas,3 ↪→ · · · .� �
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Topological Properties of Moduli of Quantized Elastica III

Topological Results of Loop Space

Theorem (Bott-Tu)� �
The cohomology of the loop space ΩSn over Sn is given by

Hp(ΩSn,R) = Rδp mod (n−1),0.

For n = 2 case, the ring structure is given by

H∗(ΩS2,R) = R[x]/(x2) · R[e],

where degree(e) = 2 and degree(x) = 1.

H∗(ΩS2,R) = R + Rx+ Re+ Rxe+ Re2 + Rxe2 + · · · .� �
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Topological Properties of Moduli of Quantized Elastica IV

Topological Results of Loop Space

Since MC
elas is topologically decomposed by genus, we have:

Theorem (MO 2003)� �
For the forgetful functor for : Diff → Top, we have

H∗(ΩS2,R) = H∗(for(MC
elas),R)

i.e., for H∗(ΩS2,R) = R[x]/(x2) · R[e], H∗(for(MC
elas),R) =

ΛR[dt1, ε], where ΛR[dt1, ε] is a ring generated by dt1 and

ε = dt1 + dt2 ∧ (dt1i∂1
) + dt3 ∧ (dt1i∂1

) + · · ·

with the wedge product and the degree: degree(dti) = 1:

H∗(for(MC
elas),R) = R+Rdt1 +Rε+Rεdt1 +Rε2 +Rε2dt1 + · · · .� �
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Topological Properties of Moduli of Quantized Elastica V

Topological Approach of Moduli space III

Proof:� �
Since ε·1 = dt1, and εn−1·dt1 = εn·1 = dtn∧dtn−1∧· · ·∧dt2∧dt1,

we have

ΛR[dt1, ε] = R + Rdt1 + Rε+ Rεdt1 + Rε2 + Rε2dt1 + · · ·
= R + Rdt1 + Rdt1 ∧ dt2 + Rdt1 ∧ dt2 ∧ dt3 + · · · .

Due to the Bäcklund transformation, MC
elas is topologically

given as a telescopic type space related to these genera.

Hence we have

H∗(for(MC
elas),R) = ΛR[dt1, ε].� �
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7. Euler’s elastica (classical solution)
MC

elas,1
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Euler’s elastica (classical solution) I

1. (Deformation MC
elas,1)

∂t1k = ∂sk,

∂t2k = Ωi∂sk = 0.

∂s(k∂
−1
s k + ∂s)∂sk = 0, ∂s

(
k

(
1

2
k2 + a

)
+ ∂2

s k

)
= 0.

1
2k

3 + ak + b+ ∂2
s k = 0.

1
4k

4 + ak2 + 2bk + c+ (∂sk)2 = 0.
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Euler’s elastica (classical solution) II

2. (Fluctuation)
∫
dsk2 →

∫
ds(k + δt∂tk)2

=
∫
ds(k + δtΩiUi)

2

=
∫
ds(k2 + 2δtkΩiUi + δt2(ΩiUi)

2)

3. The classical equation (energy minimum): obeying

2δ
∫
dsδtkΩiUi
δUi

= 0.
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Euler’s elastica (classical solution) III

4. Classical governing equation:
2δ
∮
dsδtkΩiUi
δUi

= 0:

2δ
∮
dsδtkΩiUi
δUi

=
2δ
∮
dsδtk(∂2

s + ∂sk∂−1
s k)Ui

δUi

=
2δ
∮
dsδt(∂2

s k + 1
2k

3 + ak)Ui
δUi

∂2
s k +

1

2
k3 + ak = 0.
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Euler’s elastica (classical solution) IV

5. By integrating it and multiplying k, it becomes SMKdV
equation

∂s(k
2) + 2∂s

∂2
s k

k
= 0, → b+ ak2 + 1

4k
4 + (∂sk)2 = 0.

(∂sk, k) ∈ C̃1 :=
{

(ξ, η)|ξ2 = −
1

4
η4 − aη2 − 4b.

}
Behind the problem, there exists the elliptic curve and elliptic
integral:

s =
∫ k dk√

−k4/4− ak2 − 4b
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Euler’s elastica (classical solution) V

6. (Another elliptic curve (2,3)) Let

x :=
1

4

√
−1∂sk +

1

8
k2 +

1

4
a,

y :=
1

2
∂sx = −

1

2

[√
−1

(
−

1

8
k3 −

1

4
ak +

1

4

√
−1k∂sk

)]
.

Then we have

y2 = x

(
x−

1

4
a−

1

4

√
b

)(
x−

1

4
a+

1

4

√
b

)
.

ds =
dx

2y
,
√
−1k =

∂sx

x
,
√
−1φ = log(x).
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Euler’s elastica (classical solution) VI

7. (an elliptic curve (2,3) and Weierstrass ℘ function)

℘ ≡ x− a/6 where ℘ is the Weierstrass ℘ function.

8. (Euler’s result from modern point of view)

∂sZ = e
√
−1φ = x/

√
−1 = (℘(s) + a/6)/

√
−1.

In other words, we have

Z(s) = (−ζ(s) + (a/6)s)/
√
−1,

9. The energy is given as
∮
α1

k2ds = −4η′+ 2(e1)ω′.
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Euler’s elastica (classical solution) VII

10. The affine coordinate is proportional to the curvature,
or the affine connection.

X −X0 =
1

4
k. :Euler’s relation

℘(u− ω′)− ℘(u) =
1

2

d

du

℘′(u)

(℘(u)− e1)
.

11. (Euler’s result from modern point of view)

s =
∫ X λ2dX√

λ4 − (α+ βX + γX2)2
,

Y =
∫ X (α+ βX + γX2)dX√

λ4 − (α+ βX + γX2)2
.
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Euler’s elastica (classical solution) VIII
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Isometric Diffeomorphism, IDiff XIII:

Euler’s elastica (classical solution) VII

Moduli of Euler’s elastica is defined by

MC
Euler′s elas := {τ : Euler′s elastica}

Though it is not closed, Euler implicitly found that

dimMC
Euler′s elas = 1 and

MC
Euler′s elas =

√
−1R≥0 ∪ (

1

2

√
−1R≥0)up to SL(2,C).
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Euler’s elastica (classical solution) IX

11. Euler’s relation (from viewpoint of complex analysis)

Z − Z0 = ∂s log ∂sZ.

∂2
u logσ(u)− ∂2

u logσ(u)|u=ω =
e−η1zσ(u− ω1)2

σ(u)2
.

The map C2 \ {0} 3
(
ψ1
ψ2

)
7→ γ =

ψ1

ψ2
∈ CP1 induces

C2\{0} 3
(

e−η1zσ(u− ω1)2

σ(u)2

)
7→ ∂sγ =

e−η1zσ(u− ω1)2

σ(u)2
∈ CP1.
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Euler’s elastica (classical solution) X

James Bernoulli found the Lemnis-

cate integrals:

s =
∫ 1

X

dX√
1−X4

, Y =
∫ 1

X

X2dX√
1−X4

.

Euler found the Legendre relation

of the symplectic structure in the

Jacobian,∫ 1

0

dX√
1−X4

∫ 1

0

X2dX√
1−X4

=
π

2
.
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Euler’s elastica (classical solution) XI

Symplectic Structure

Z(s) = (−ζ(s) + (a/6)s)/
√
−1,

The symplectic structure in Jacobian is given by

〈ds, ζ(s)ds〉 = 1

and

ω′η′′ − ω′′η′ =
π

2

√
−1.

It means that for the space

G := {(s, Z(s))|s ∈ S1} ⊂ S1 × Z(S1)

T∗G has the “symplectic structure” ds ∧ dZ.
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Euler’s elastica (classical solution) XII

12. Circle X2 + Y 2 = 1.

13. Eight Figure:
The closed loops are only these

cases. The shape of the Class 5

is realized by twisting of the circle.

The modulus of the eight figure

is τ = 0.70946 · · · ×
√
−1, which

corresponds to η′ = ω′e2/2.
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8. Quantized Elastica and Hyperelliptic
Jacobians
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Quantized Elastica and Hyperelliptic Jacobians I

Hyperelliptic Curves
In 1903, Baker gave the KP equation and KdV hierar-

chy using the bilinear operator and posed the problem similar

to Novikov-conjecture starting from the theory of the hyperellip-

tic curves. H. F. Baker, On a system of differential equations leading to

periodic functions, Acta Math. 27 (1903), 135156.

Since 1996, I have studied these hyperelliptic curves and

algebraic curves using the Baker and Klein theory (2003

MO, 2001 M, 2002 M, 2007 EEMOP, 2008, EEMOP, 2008

MP, 2012KMP) with Y. Ônishi, V. Enolskii, C. Eilbeck, Y.

Kodama, J. Gibbons, and E. Previato.
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Quantized Elastica and Hyperelliptic Jacobians II

Hyperelliptic Curves

A hyperelliptic curve

Cg of genus g (g > 0)

is given by,

y2 =(x− b1)(x− b2) · · ·
· · · (x− b2g+1),

where bj’s are complex

numbers.
g = 1 case

Euler’s elastica

g = 2 case

Quantized elastica
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Quantized Elastica and Hyperelliptic Jacobians II

Hyperelliptic Integrals

Hyperelliptic complete integrals :

ω′ij :=
∫
αi
νIj , ω′′ij :=

∫
βi
νIj , i, j = 1, . . . , g,

η′ij :=
∫
αi
νIIj , η′′ij :=

∫
βi
νIIj , i, j = 1, . . . , g,

where hyperelliptic differentials, 1st and 2nd kinds:

νIi =
xi−1dx

2y
, νIIi =

(xg+i−1 +
∑g+i−2
j=1 aijx

j)dx

2y
.

for certain aij of bi’s, (i = 1, . . . , g).
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Quantized Elastica and Hyperelliptic Jacobians III

Symplectic structure as Legendre relations

Legendre relations as the symplectic structure:

ω′η′′ − ω′′η′ =
π

2

√
−1Ig

This is the same as a part of Galois’s letter to A. Chevalier:
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Quantized Elastica and Hyperelliptic Jacobians IV

Hyperelliptic Jacobian

For a symmetric product space of Cg, Sg(Cg), the Abelian map

is defined by

u := (u1, · · · , ug) : Sg(Cg) −→ Cg,

uk((x1, y1), · · · , (xg, yg)) :=
g∑

i=1

∫ (xi,yi)

∞

xk−1dx

2y

 .
The hyperelliptic Jacobian:

Jg = Cg/Λ, Λ =< ω′, ω′′ >Z .
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Quantized Elastica and Hyperelliptic Jacobians V
theta function and sigma function

T = ω′−1ω′′. The θ function on Cg with modulus T and charac-
teristics Ta+ b is given by

θ

[
a
b

]
(z) = θ

[
a
b

]
(z;T)

=
∑
n∈Zg

exp
[
2π
√
−1

{
1

2
t(n+ a)T(n+ a) + t(n+ a)(z + b)

}]
for g-dimensional complex vectors a and b.

The σ-function is given by

σ(u) = γ0 exp
{
−

1

2
tuη′ω′−1

u

}
ϑ

[
δ′′

δ′

]
(
1

2
ω′−1

u;T)

where δ and δ′ are half-integer characteristics.
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Quantized Elastica and Hyperelliptic Jacobians VI

Hyperelliptic ℘, ζ, and alr functions

℘ij = −
∂2

∂ui∂uj
logσ(u),

ζi =
∂

∂ui
logσ(u)

alr :=
√

(br − x1)(br − x2) · · · (br − xg) = γ′0
e−ηruσ(u+ ωr)

σ(ωr)σ(u)
,
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Quantized Elastica and Hyperelliptic Jacobians VII

Hyperelliptic Solutions and Quantized Elastica

Theorem (2002, 2010 M)� �
1) For the hyperelliptic curve Cg, by lettings := ug, Zr ∈
MC

elas,E (r = 1,2, · · · ,2g + 1) is given by

∂sZr(s) = alr(s)
2, Zr(s) = bgrs−

g∑
i=1

ζi(s)b
i−1
r .

2) Zr(u ∈ Jg) is isoenergy flows!!!

3) The energy is given by the hyperelliptic integrals:∮
αa
k2
r ds = −4η′ag + 2(λ2g + br)ω

′
ag

4) Vol(MC
elas,E) is the volume of the real subspace in the

Jacobi variety Jg.� �
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Quantized Elastica and Hyperelliptic Jacobians VIII

Quantized Elastica and Euler’s Elastica

Remark� �
1) The shape of quantized elastica is

Zr(s) = b
g
rs−

∑g
i=1 ζi(s)b

i−1
r ,

whereas that of Euler’s elastica is

Z(s) = (a/6)s− ζ(s) for (Z := Z(s)/
√
−1).

2) The energy of quantized elastica is∮
k2ds = −4η′ag + 2(λ2g + br)ω

′
ag,

whereas that of Euler’s elastica is∮
k2ds = −4η′+ 2(e1)ω′.

3) The generalization of Euler’s relation is

Z(u)− Z(u− ω) =
∑g
i b
i−1∂i log ∂t1Z.� �
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Quantized Elastica and Hyperelliptic Jacobians IX

Quantized Elastica and Euler’s Elastica

Remark� �
4) The shape of quantized elastica is

Z1
Z2
...

Zg+1

 =


b
g
1 b

g−1
1 b

g−2
1 · · · b1 1

b
g
2 b

g−1
2 b

g−2
2 · · · b2 1

... ... ... . . . ... ...

b
g
g+1 b

g−1
g+1 b

g−2
g+1 · · · bg+1 1



s
ζg
...
ζ1

 .

〈ζrdtg−r, dtv〉 = δr,v means 〈
∑
i

πr,iZidtg−r, dtv〉 = δr,v,

which is a “symplectic structure” in MC
elas.� �
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9. Final Remarks
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9. Final Remarks

1. A quantized elastica in (p, q)-dimensional Minkswski space

with so(p, q) and generalized MKdV equation.

2. Willmore surface (Polynakov extrinsic string) and MNV hi-

erarchy (M 1999),

3. A geometrical object expressed by generalized Weierstrass

representation of submanifold Dirac operator (M 2008, 2009),

4. Diff/SDiff for a manifold which B. Khesin (Arnold-Khesin)

considers, or fluid dynamics.
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Thanks!

104


